We develop a number of novel black-bounce spacetimes. These are specific regular black holes where the area radius always remains non-zero, thereby leading to a throat that is either timelike (corresponding to a traversable wormhole), spacelike (corresponding to a bounce into a future universe), or null (corresponding to a one-way wormhole). We shall first perform a general analysis of the regularity conditions for such a spacetime, and then consider a number of specific examples. The examples are constructed using a mass function similar to that of Fan--Wang, and fall into several particular cases, such as the original Simpson--Visser model, a Bardeen-type model, and other generalizations thereof. We shall analyse the regularity, the energy conditions, and the causal structure of these models. The main results are several new geometries, more complex than before, with two or more horizons, with the possibility of an extremal case. We shall derive a general theorem regarding static space-time regularity, and another general theorem regarding (non)-satisfaction of the classical energy conditions.