Simulating a fermionic system on a quantum computer requires encoding the anti-commuting fermionic variables into the operators acting on the qubit Hilbert space. The most familiar of which, the Jordan-Wigner transformation, encodes fermionic operators into non-local qubit operators. As non-local operators lead to a slower quantum simulation, recent works have proposed ways of encoding fermionic systems locally. In this work, we show that locality may in fact be too strict of a condition and the size of operators can be reduced by encoding the system quasi-locally. We give examples relevant to lattice models of condensed matter and systems relevant to quantum gravity such as SYK models. Further, we provide a general construction for designing codes to suit the problem and resources at hand and show how one particular class of quasi-local encodings can be thought of as arising from truncating the state preparation circuit of a local encoding. We end with a discussion of designing codes in the presence of device connectivity constraints.