We use the microscopic GiBUU transport model to calculate dilepton ($e^+e^-$) production in heavy-ion collisions at SIS18 energies focusing on the effect of collisional broadening of the $rho$-meson. The collisional width of the $rho$-meson at finite temperature and baryon density in nuclear matter is calculated on the basis of the collision integral of the GiBUU model. A systematic comparison with HADES data on dilepton production in heavy-ion collisions is performed. The collisional broadening of the $rho$ improves the agreement between theory and experiment for the dilepton invariant-mass distributions near the $rho$ pole mass and for the excess radiation in Au+Au at $1.23 A$ GeV. We furthermore show that some remaining underprediction of the experimental dilepton spectra in C+C at $1 A$ GeV and Au+Au at $1.23 A$ GeV at intermediate invariant masses $0.2-0.4$ GeV can be accounted for by adjusting the $pn$ bremsstrahlung cross section in a way to agree with the inclusive dilepton spectrum from $dp$ collisions at $1.25 A$ GeV.
We compute dilepton invariant mass spectra from the decays of rho mesons produced by photon reactions off nuclei. Our calculations employ a realistic model for the rho photoproduction amplitude on the nucleon which provides fair agreement with measured cross sections. Medium effects are implemented via an earlier constructed rho propagator based on hadronic many-body theory. At incoming photon energies of 1.5 -3 GeV as used by the CLAS experiment at JLAB, the average density probed for iron targets is estimated at about half saturation density. At the pertinent rho-meson 3-momenta the predicted medium effects on the rho propagator are rather moderate. The resulting dilepton spectra approximately agree with recent CLAS data.
We investigate dilepton production in transport-based approaches and show that the baryon couplings of the $rho$ meson represent the most important ingredient for understanding the measured dilepton spectra. At low energies (of a few GeV), the baryon resonances naturally play a larger role and affect already the vacuum spectra via Dalitz-like contributions, which can be captured well in an on-shell-transport scheme. At higher energies, the baryons mostly affect the in-medium self energy of the $rho$, which is harder to tackle in transport models and requires advanced techniques.
We investigate dilepton production in transport-based approaches and show that the baryon couplings of the $rho$ meson represent the most important ingredient for understanding the measured dilepton spectra. At SIS energies, the baryon resonances naturally play a major role and affect already the vacuum spectra via Dalitz-like contributions, which can be captured well in transport simulations. Recent pion-beam measurements at GSI will help to constrain the properties of the involved resonances further.
We report on a self-consistent calculation of the in-medium spectral functions of the rho and omega mesons at finite baryon density. The corresponding in-medium dilepton spectrum is generated and compared with HADES data. We find that an iterative calculation of the vector meson spectral functions provides a reasonable description of the experimental data.
The in-medium spectral functions of $rho$ and $omega$ mesons and the broadening of the nucleon resonances at finite baryon density are calculated self-consistently by combining a resonance dominance model for the vector meson production with an extended vector meson dominance model. The influence of the in-medium modifications of the vector meson properties on the dilepton spectrum in heavy-ion collisions is investigated. The dilepton spectrum is generated for the C+C reaction at 2.0$A$ GeV and compared with recent HADES Collaboration data. The collision dynamics is then described by the Tubingen relativistic quantum molecular dynamics transport model. We find that an iterative calculation of the vector meson spectral functions that takes into account the broadening of the nucleon resonances due to their increased in-medium decay branchings is convergent and provides a reasonable description of the experimental data in the mass region $0.45leq M leq 0.75$ GeV. On the other side, the theoretical calculations slightly underestimate the region $m_pileq M leq 0.4$ GeV. Popular in-medium scenarios such as a schematic collisional broadening and dropping vector mesons masses are discussed as well.
A.B. Larionov
,U. Mosel
,L. von Smekal
.
(2020)
.
"Dilepton production in microscopic transport theory with in-medium $rho$-meson spectral function"
.
Alexei Larionov
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا