Do you want to publish a course? Click here

Stealth dark energy in scordatura DHOST theory

65   0   0.0 ( 0 )
 Added by Mohammad Ali Gorji
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A stealth de Sitter solution in scalar-tensor theories has an exact de Sitter background metric and a nontrivial scalar field profile. Recently, in the context of Degenerate Higher-Order Scalar-Tensor (DHOST) theories it was shown that stealth de Sitter solutions suffer from either infinite strong coupling or gradient instability for scalar field perturbations. The sound speed squared is either vanishing or negative. In the first case, the strong coupling scale is zero and thus lower than the energy scale of any physical phenomena. From the viewpoint of effective field theory, this issue is naturally resolved by introducing a controlled detuning of the degeneracy condition dubbed scordatura, recovering a version of ghost condensation. In this paper we construct a viable dark energy model in the scordatura DHOST theory based on a stealth cosmological solution, in which the metric is the same as in the standard $Lambda$CDM model and the scalar field profile is linearly time-dependent. We show that the scordatura mechanism resolves the strong coupling and gradient instability. Further, we find that the scordatura is also necessary to make the quasi-static limit well-defined, which implies that the subhorizon observables are inevitably affected by the scordatura. We derive the effective gravitational coupling and the correction to the friction term for the subhorizon evolution of the linear dark matter energy density contrast as well as the Weyl potential and the gravitational slip parameter. In the absence of the scordatura, the quasi-static approximation would break down at all scales around stealth cosmological solutions even if the issue of the infinite strong coupling is unjustly disregarded. Therefore previous estimations of the subhorizon evolution of matter density contrast in modified gravity in the literature need to be revisited by taking into account the scordatura effect.



rate research

Read More

We investigate the structure formation in the effective field theory of the holographic dark energy. The equation of motion for the energy contrast $delta_m$ of the cold dark matter is the same as the one in the general relativity up to the leading order in the small scale limit $kgg aH$, provided the equation of state is Quintessence-like. Our effective field theory breaks down while the equation of state becomes phantom-like. We propose a solution to this problem by eliminating the scalar graviton.
We present a new class of nonsingular bounce cosmology free from instabilities, using a single scalar field coupled to gravity within the framework of the Degenerate Higher-Order Scalar-Tensor (DHOST) theories. In this type of scenarios, the gradient instability that widely exists in nonsingular bounce cosmologies in the framework of scalar-tensor and Horndeski/Galileon theories is removed by the effects of new operators introduced by the DHOST, due to the modification that they later bring about to the dispersion relation of perturbations. Hence, our results demonstrate that there is indeed a loophole for this type of bounce scenarios to be free from pathologies when primordial perturbations evolve through the bounce phase, and thus the theoretical {it no-go} theorem for nonsingular bounce cosmology of Horndeski/Galileon theories can be delicately evaded in DHOST extensions.
137 - Mian Zhu , Yunlong Zheng 2021
We improve the DHOST Genesis proposed in cite{Ilyas:2020zcb}, such that the near scale invariant scalar power spectrum can be generated from the model itself, without involking extra mechanism like a string gas. Besides, the superluminality problem of scalar perturbation plagued in cite{Ilyas:2020zcb} can be rescued by choosing proper DHOST action.
Studying the effects of dark energy and modified gravity on cosmological scales has led to a great number of physical models being developed. The effective field theory (EFT) of cosmic acceleration allows an efficient exploration of this large model space, usually carried out on a phenomenological basis. However, constraints on such parametrized EFT coefficients cannot be trivially connected to fundamental covariant theories. In this paper we reconstruct the class of covariant Horndeski scalar-tensor theories that reproduce the same background dynamics and linear perturbations as a given EFT action. One can use this reconstruction to interpret constraints on parametrized EFT coefficients in terms of viable covariant Horndeski theories. We demonstrate this method with a number of well-known models and discuss a range of future applications.
In quadratic-order degenerate higher-order scalar-tensor (DHOST) theories compatible with gravitational-wave constraints, we derive the most general Lagrangian allowing for tracker solutions characterized by $dot{phi}/H^p={rm constant}$, where $dot{phi}$ is the time derivative of a scalar field $phi$, $H$ is the Hubble expansion rate, and $p$ is a constant. While the tracker is present up to the cubic-order Horndeski Lagrangian $L=c_2X-c_3X^{(p-1)/(2p)} square phi$, where $c_2, c_3$ are constants and $X$ is the kinetic energy of $phi$, the DHOST interaction breaks this structure for $p eq 1$. Even in the latter case, however, there exists an approximate tracker solution in the early cosmological epoch with the nearly constant field equation of state $w_{phi}=-1-2pdot{H}/(3H^2)$. The scaling solution, which corresponds to $p=1$, is the unique case in which all the terms in the field density $rho_{phi}$ and the pressure $P_{phi}$ obey the scaling relation $rho_{phi} propto P_{phi} propto H^2$. Extending the analysis to the coupled DHOST theories with the field-dependent coupling $Q(phi)$ between the scalar field and matter, we show that the scaling solution exists for $Q(phi)=1/(mu_1 phi+mu_2)$, where $mu_1$ and $mu_2$ are constants. For the constant $Q$, i.e., $mu_1=0$, we derive fixed points of the dynamical system by using the general Lagrangian with scaling solutions. This result can be applied to the model construction of late-time cosmic acceleration preceded by the scaling $phi$-matter-dominated epoch.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا