Do you want to publish a course? Click here

Entanglement entropy in cubic gravitational theories

72   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive the holographic entanglement entropy functional for a generic gravitational theory whose action contains terms up to cubic order in the Riemann tensor, and in any dimension. This is the simplest case for which the so-called splitting problem manifests itself, and we explicitly show that the two common splittings present in the literature - minimal and non-minimal - produce different functionals. We apply our results to the particular examples of a boundary disk and a boundary strip in a state dual to 4-dimensional Poincare AdS in Einsteinian Cubic Gravity, obtaining the bulk entanglement surface for both functionals and finding that causal wedge inclusion is respected for both splittings and a wide range of values of the cubic coupling.



rate research

Read More

We discuss and compute entanglement entropy (EE) in (1+1)-dimensional free Lifshitz scalar field theories with arbitrary dynamical exponents. We consider both the subinterval and periodic sublattices in the discretized theory as subsystems. In both cases, we are able to analytically demonstrate that the EE grows linearly as a function of the dynamical exponent. Furthermore, for the subinterval case, we determine that as the dynamical exponent increases, there is a crossover from an area law to a volume law. Lastly, we deform Lifshitz field theories with certain relevant operators and show that the EE decreases from the ultraviolet to the infrared fixed point, giving evidence for a possible c-theorem for deformed Lifshitz theories.
We consider scattering of Faddeev-Kulish electrons in QED and study the entanglement between the hard and soft particles in the final state at the perturbative level. The soft photon spectrum naturally splits into two parts: i) soft photons with energies less than a characteristic infrared scale $E_d$ present in the clouds accompanying the asymptotic charged particles, and ii) sufficiently low energy photons with energies greater than $E_d$, comprising the soft part of the emitted radiation. We construct the density matrix associated with tracing over the radiative soft photons and calculate the entanglement entropy perturbatively. We find that the entanglement entropy is free of any infrared divergences order by order in perturbation theory. On the other hand infrared divergences in the perturbative expansion for the entanglement entropy appear upon tracing over the entire spectrum of soft photons, including those in the clouds. To leading order the entanglement entropy is set by the square of the Fock basis amplitude for real single soft photon emission, which leads to a logarithmic infrared divergence when integrated over the photon momentum. We argue that the infrared divergences in the entanglement entropy (per particle flux per unit time) in this latter case persist to all orders in perturbation theory in the infinite volume limit.
In this paper, we demonstrate the emergence of nonlinear gravitational equations directly from the physics of a broad class of conformal field theories. We consider CFT excited states defined by adding sources for scalar primary or stress tensor operators to the Euclidean path integral defining the vacuum state. For these states, we show that up to second order in the sources, the entanglement entropy for all ball-shaped regions can always be represented geometrically (via the Ryu-Takayanagi formula) by an asymptotically AdS geometry. We show that such a geometry necessarily satisfies Einsteins equations perturbatively up to second order, with a stress energy tensor arising from matter fields associated with the sourced primary operators. We make no assumptions about AdS/CFT duality, so our work serves as both a consistency check for the AdS/CFT correspondence and a direct demonstration that spacetime and gravitational physics can emerge from the description of entanglement in conformal field theories.
We study the mixed state entanglement properties in two holographic axion models by examining the behavior of the entanglement wedge minimum cross section (EWCS), and comparing it with the holographic entanglement entropy (HEE) and mutual information (MI). We find that the behavior of HEE, MI and EWCS with Hawking temperature is monotonic, while the behavior with the axion parameter $k$ is more rich, which depends on the size of the configuration and the values of the other two parameters. Interestingly, the EWCS monotonically increases with the coupling constant $kappa$ between the axion field and the Maxwell field, while HEE and MI can be non-monotonic. It suggests that the EWCS, as a mixed state entanglement measure, captures distinct degrees of freedom from the HEE and MI indeed. We also provide analytical understandings for most of the numerical results.
We consider the entanglement entropy of a free massive scalar field in the one parameter family of $alpha$-vacua in de Sitter space by using a method developed by Maldacena and Pimentel. An $alpha$-vacuum can be thought of as a state filled with particles from the point of view of the Bunch-Davies vacuum. Of all the $alpha$-vacua we find that the entanglement entropy takes the minimal value in the Bunch-Davies solution. We also calculate the asymptotic value of the Renyi entropy and find that it increases as $alpha$ increases. We argue these feature stem from pair condensation within the non-trivial $alpha$-vacua where the pairs have an intrinsic quantum correlation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا