Do you want to publish a course? Click here

Entanglement of Two Jaynes-Cummings Atoms In Single Excitation Space

80   0   0.0 ( 0 )
 Added by Yan Liu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the entanglement dynamics of two atoms coupled to their own Jaynes-Cummings cavities in single-excitation space. Here we use the concurrence to measure the atomic entanglement. And the partial Bell states as initial states are considered. Our analysis suggests that there exist collapses and recovers in the entanglement dynamics. The physical mechanism behind the entanglement dynamics is the periodical information and energy exchange between atoms and light fields. For the initial Partial Bell states, only if the ratio of two atom-cavity coupling strengths is a rational number, the evolutionary periodicity of the atomic entanglement can be found. And whether there is time translation between two kinds of initial partial Bell state cases depends on the odd-even number of the coupling strength ratio.



rate research

Read More

105 - Muhammed Yonac , Ting Yu , 2006
We investigate entanglement dynamics of two isolated atoms, each in its own Jaynes-Cummings cavity. We show analytically that initial entanglement has an interesting subsequent time evolution, including the so-called sudden death effect.
We find that a suppression of the collapse and revival of population inversion occurs in response to insertion of Gaussian quenched disorder in atom-cavity interaction strength in the Jaynes-Cummings model. The character of suppression can be significantly different in the presence of non-Gaussian disorder, which we uncover by studying the cases when the disorder is uniform, discrete, and Cauchy-Lorentz. Interestingly, the quenched averaged atom-photon entanglement keeps displaying nontrivial oscillations even after the population inversion has been suppressed. Subsequently, we show that disorder in atom-cavity interactions helps to avoid sudden death of atom-atom entanglement in the double Jaynes-Cummings model. We identify the minimal disorder strengths required to eliminate the possibility of sudden death. We also investigate the response of entanglement sudden death in the disordered double Jaynes-Cummings model in the presence of atom-atom coupling.
66 - Mazhar Ali 2021
We study three independent pairs of Jaynes-Cummings systems such that two atoms might be correlated with each other but the third atom is uncorrelated with rest. We investigate the conditions under which these uncorrelated three atoms may become genuinely entangled. We find that this task is impossible if the cavity interacting with uncorrelated atom share classical correlations with any other cavity. We observe that atomic state can become genuine multipartite entangled, at least if the cavity with uncorrelated atom, is highly entangled with any other cavity. This is an interesting and non-trivial observation and may serve as another technique to generate multipartite entangled atoms via JC-interactions. The findings can be realized with available experimental setups.
We show that Jaynes-Cummings dynamics can be observed in mesoscopic atomic ensembles interacting with a classical electromagnetic field in the regime of Rydberg blockade, where the time dynamics of the average number of Rydberg excitations in mesoscopic ensembles displays collapses and revivals typical of this model. As the frequency of Rabi oscillations between collective states of Rydberg blockaded ensembles depends on the number of interacting atoms, for randomly loaded optical dipole traps we predict collapses and revivals of Rabi oscillations. We have studied the effects of finite interaction strengths and finite laser line width on the visibility of the revivals. We have shown that observation of collapses and revivals of Rabi oscillations can be used as a signature of Rydberg blockade without the need to measure the exact number of Rydberg atoms.
In this paper, we study the interaction between the two-level atom and a bimodal cavity field, namely, two-mode Jaynes-Cummings model when the atom and the modes are initially in the atomic superposition state and two-mode squeezed vacuum state, respectively. For this system we investigate the atomic inversion, linear entropy and atomic Wehrl entropy. We show that there is a connection between all these quantities. Also we prove that the atomic Wehrl entropy exhibits behaviors similar to those of the linear entropy and the von Neumann entropy. Moreover, we show that the bipartite exhibits periodical disentanglement and derive the explicit forms of the states of the atom and the modes at these values of the interaction times.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا