Galaxy-scale ionised winds driven by ultra-fast outflows in two nearby quasars


Abstract in English

We use MUSE adaptive optics (AO) data in Narrow Field Mode to study the properties of the ionised gas in MR 2251-178 and PG 1126-041, two nearby (z~0.06) bright quasars hosting sub-pc scale Ultra Fast Outflows (UFOs) detected in the X-ray band. We decompose the optical emission from diffuse gas into a low- and a high-velocity components. The former is characterised by a clean, regular velocity field and a low (~80 km/s) velocity dispersion. It traces regularly rotating gas in PG 1126-041, while in MR 2251-178 it is possibly associated to tidal debris from a recent merger or flyby. The other component is found to be extended up to a few kpc from the nuclei, and shows a high (~800 km/s) velocity dispersion and a blue-shifted mean velocity, as expected from AGN-driven outflows. We estimate mass outflow rates up to a few Mo/yr and kinetic efficiencies between 0.1-0.4 per cent, in line with those of galaxies hosting AGNs of similar luminosity. The momentum rates of these ionised outflows are comparable to those measured for the UFOs at sub-pc scales, consistent with a momentum-driven wind propagation. Pure energy-driven winds are excluded unless about 100x additional momentum is locked in massive molecular winds. By comparing the outflow properties of our sources with those of a small sample of well-studied QSOs hosting UFOs from the literature, we find that winds seem to systematically lie either in a momentum-driven or in an energy-driven regime, indicating that these two theoretical models bracket very well the physics of AGN-driven winds.

Download