In this work, we propose how to load and manipulate chiral states in a Josephson junction ring in the so called transmon regimen. We characterise these states by their symmetry properties under time reversal and parity transformations. We describe an explicit protocol to load and detect the states within a realistic set of circuit parameters and show simulations that reveal the chiral nature. Finally, we explore the utility of these states in quantum technological nonreciprocal devices.
Josephson junctions (JJs) are ubiquitous superconducting devices, enabling high sensitivity magnetometers and voltage amplifiers, as well as forming the basis of high performance cryogenic computer and superconducting quantum computers. While JJ performance can be degraded by quasiparticles (QPs) formed from broken Cooper pairs, this phenomenon also opens opportunities to sensitively detect electromagnetic radiation. Here we demonstrate single near-infrared photon detection by coupling photons to the localized surface plasmons of a graphene-based JJ. Using the photon-induced switching statistics of the current-biased JJ, we reveal the critical role of QPs generated by the absorbed photon in the detection mechanism. The photon-sensitive JJ will enable a high-speed, low-power optical interconnect for future JJ-based computing architectures.
The seminal theoretical works of Berezinskii, Kosterlitz, and Thouless presented a new paradigm for phase transitions in condensed matter that are driven by topological excitations. These transitions have been extensively studied in the context of two-dimensional XY models -- coupled compasses -- and have generated interest in the context of quantum simulation. Here, we use a circuit quantum-electrodynamics architecture to study the critical behavior of engineered XY models through their dynamical response. In particular, we examine not only the unfrustrated case but also the fully-frustrated case which leads to enhanced degeneracy associated with the spin rotational [U$(1)$] and discrete chiral ($Z_2$) symmetries. The nature of the transition in the frustrated case has posed a challenge for theoretical studies while direct experimental probes remain elusive. Here we identify the transition temperatures for both the unfrustrated and fully-frustrated XY models by probing a Josephson junction array close to equilibrium using weak microwave excitations and measuring the temperature dependence of the effective damping obtained from the complex reflection coefficient. We argue that our probing technique is primarily sensitive to the dynamics of the U$(1)$ part.
We investigate the influence of a weakly nonlinear Josephson bath consisting of a chain of Josephson junctions on the dynamics of a small quantum system (LC oscillator). Focusing on the regime where the charging energy is the largest energy scale, we perturbatively calculate the correlation function of the Josephson bath to the leading order in the Josephson energy divided by the charging energy while keeping the cosine potential exactly. When the variation of the charging energy along the chain ensures fast decay of the bath correlation function, the dynamics of the LC oscillator that is weakly and capacitively coupled to the Josephson bath can be solved through the Markovian master equation. We establish a duality relation for the Josephson bath between the regimes of large charging and Josephson energies respectively. The results can be applied to cases where the charging energy either is nonuniformly engineered or disordered in the chain. Furthermore, we find that the Josephson bath may become non-Markovian when the temperature is increased beyond the zero-temperature limit in that the bath correlation function gets shifted by a constant and does not decay with time.
Nonreciprocal microwave transmission through a long Josephson junction in the flux-flow regime is studied analytically and numerically within the framework of the perturbed sine-Gordon model. We demonstrate that the maximum attenuation of the transmitted power occurs when the direction of the flux flow is opposite to the direction of the microwave propagation. This attenuation is nonreciprocal with respect to the flux-flow direction and can be enhanced by increasing the system length and proper impedance matching of the junction ends to external transmission line.
Superconducting quantum circuits based on Josephson junctions have made rapid progress in demonstrating quantum behavior and scalability. However, the future prospects ultimately depend upon the intrinsic coherence of Josephson junctions, and whether superconducting qubits can be adequately isolated from their environment. We introduce a new architecture for superconducting quantum circuits employing a three dimensional resonator that suppresses qubit decoherence while maintaining sufficient coupling to the control signal. With the new architecture, we demonstrate that Josephson junction qubits are highly coherent, with $T_2 sim 10 mu$s to $20 mu$s without the use of spin echo, and highly stable, showing no evidence for $1/f$ critical current noise. These results suggest that the overall quality of Josephson junctions in these qubits will allow error rates of a few $10^{-4}$, approaching the error correction threshold.
R. Asensio-Perea
,A. Parra-Rodriguez
,G. Kirchmair
.
(2020)
.
"Chiral states and nonreciprocal phases in a Josephson junction ring"
.
Enrique Rico Ortega
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا