No Arabic abstract
A split graph is a graph whose vertex set can be partitioned into a clique and a stable set. Given a graph $G$ and weight function $w: V(G) to mathbb{Q}_{geq 0}$, the Split Vertex Deletion (SVD) problem asks to find a minimum weight set of vertices $X$ such that $G-X$ is a split graph. It is easy to show that a graph is a split graph if and only it it does not contain a $4$-cycle, $5$-cycle, or a two edge matching as an induced subgraph. Therefore, SVD admits an easy $5$-approximation algorithm. On the other hand, for every $delta >0$, SVD does not admit a $(2-delta)$-approximation algorithm, unless P=NP or the Unique Games Conjecture fails. For every $epsilon >0$, Lokshtanov, Misra, Panolan, Philip, and Saurabh recently gave a randomized $(2+epsilon)$-approximation algorithm for SVD. In this work we give an extremely simple deterministic $(2+epsilon)$-approximation algorithm for SVD.
We give the first $2$-approximation algorithm for the cluster vertex deletion problem. This is tight, since approximating the problem within any constant factor smaller than $2$ is UGC-hard. Our algorithm combines the previous approaches, based on the local ratio technique and the management of true twins, with a novel construction of a good cost function on the vertices at distance at most $2$ from any vertex of the input graph. As an additional contribution, we also study cluster vertex deletion from the polyhedral perspective, where we prove almost matching upper and lower bounds on how well linear programming relaxations can approximate the problem.
We present a local algorithm (constant-time distributed algorithm) for finding a 3-approximate vertex cover in bounded-degree graphs. The algorithm is deterministic, and no auxiliary information besides port numbering is required.
A cactus is a connected graph that does not contain $K_4 - e$ as a minor. Given a graph $G = (V, E)$ and integer $k ge 0$, Cactus Vertex Deletion (also known as Diamond Hitting Set) is the problem of deciding whether $G$ has a vertex set of size at most $k$ whose removal leaves a forest of cacti. The current best deterministic parameterized algorithm for this problem was due to Bonnet et al. [WG 2016], which runs in time $26^kn^{O(1)}$, where $n$ is the number of vertices of $G$. In this paper, we design a deterministic algorithm for Cactus Vertex Deletion, which runs in time $17.64^kn^{O(1)}$. As a straightforward application of our algorithm, we give a $17.64^kn^{O(1)}$-time algorithm for Even Cycle Transversal. The idea behind this improvement is to apply the measure and conquer analysis with a slightly elaborate measure of instances.
One of the most fundamental results in combinatorial optimization is the polynomial-time 3/2-approximation algorithm for the metric traveling salesman problem. It was presented by Christofides in 1976 and is well known as the Christofides algorithm. Recently, some authors started calling it Christofides-Serdyukov algorithm, pointing out that it was published independently in the USSR in 1978. We provide some historic background on Serdyukovs findings and a translation of his article from Russian into English.
This paper introduces a novel algorithmic solution for the approximation of a given multivariate function by a nomographic function that is composed of a one-dimensional continuous and monotone outer function and a sum of univariate continuous inner functions. We show that a suitable approximation can be obtained by solving a cone-constrained Rayleigh-Quotient optimization problem. The proposed approach is based on a combination of a dimensionwise function decomposition known as Analysis of Variance (ANOVA) and optimization over a class of monotone polynomials. An example is given to show that the proposed algorithm can be applied to solve problems in distributed function computation over multiple-access channels.