No Arabic abstract
Systems with lattice geometry can be renormalized exploiting their embedding in metric space, which naturally defines the coarse-grained nodes. By contrast, complex networks defy the usual techniques because of their small-world character and lack of explicit metric embedding. Current network renormalization approaches require strong assumptions (e.g. community structure, hyperbolicity, scale-free topology), thus remaining incompatible with generic graphs and ordinary lattices. Here we introduce a graph renormalization scheme valid for any hierarchy of coarse-grainings, thereby allowing for the definition of `block nodes across multiple scales. This approach reveals a necessary and specific dependence of network topology on an additive hidden variable attached to nodes, plus optional dyadic factors. Renormalizable networks turn out to be consistent with a unique specification of the fitness model, while they are incompatible with preferential attachment, the configuration model or the stochastic blockmodel. These results highlight a deep conceptual distinction between scale-free and scale-invariant networks, and provide a geometry-free route to renormalization. If the hidden variables are annealed, the model spontaneously leads to realistic scale-free networks with cut-off. If they are quenched, the model can be used to renormalize real-world networks with node attributes and distance-dependence or communities. As an example we derive an accurate multiscale model of the International Trade Network applicable across hierarchical geographic partitions.
Real networks are finite metric spaces. Yet the geometry induced by shortest path distances in a network is definitely not its only geometry. Other forms of network geometry are the geometry of latent spaces underlying many networks, and the effective geometry induced by dynamical processes in networks. These three approaches to network geometry are all intimately related, and all three of them have been found to be exceptionally efficient in discovering fractality, scale-invariance, self-similarity, and other forms of fundamental symmetries in networks. Network geometry is also of great utility in a variety of practical applications, ranging from the understanding how the brain works, to routing in the Internet. Here, we review the most important theoretical and practical developments dealing with these approaches to network geometry in the last two decades, and offer perspectives on future research directions and challenges in this novel frontier in the study of complexity.
A large number of complex systems find a natural abstraction in the form of weighted networks whose nodes represent the elements of the system and the weighted edges identify the presence of an interaction and its relative strength. In recent years, the study of an increasing number of large scale networks has highlighted the statistical heterogeneity of their interaction pattern, with degree and weight distributions which vary over many orders of magnitude. These features, along with the large number of elements and links, make the extraction of the truly relevant connections forming the networks backbone a very challenging problem. More specifically, coarse-graining approaches and filtering techniques are at struggle with the multiscale nature of large scale systems. Here we define a filtering method that offers a practical procedure to extract the relevant connection backbone in complex multiscale networks, preserving the edges that represent statistical significant deviations with respect to a null model for the local assignment of weights to edges. An important aspect of the method is that it does not belittle small-scale interactions and operates at all scales defined by the weight distribution. We apply our method to real world network instances and compare the obtained results with alternative backbone extraction techniques.
A valid prediction for a physical observable from quantum field theory should be independent of the choice of renormalization scheme -- this is the primary requirement of renormalization group invariance (RGI). Satisfying scheme invariance is a challenging problem for perturbative QCD (pQCD), since a truncated perturbation series does not automatically satisfy the requirements of the renormalization group. Two distinct approaches for satisfying the RGI principle have been suggested in the literature. One is the Principle of Maximum Conformality (PMC) in which the terms associated with the $beta$-function are absorbed into the scale of the running coupling at each perturbative order; its predictions are scheme and scale independent at every finite order. The other approach is the Principle of Minimum Sensitivity (PMS), which is based on local RGI; the PMS approach determines the optimal renormalization scale by requiring the slope of the approximant of an observable to vanish. In this paper, we present a detailed comparison of the PMC and PMS procedures by analyzing two physical observables $R_{e+e-}$ and $Gamma(Hto bbar{b})$ up to four-loop order in pQCD. At the four-loop level, the PMC and PMS predictions for both observables agree within small errors with those of conventional scale setting assuming a physically-motivated scale, and each prediction shows small scale dependences. However, the convergence of the pQCD series at high orders, behaves quite differently: The PMC displays the best pQCD convergence since it eliminates divergent renormalon terms; in contrast, the convergence of the PMS prediction is questionable, often even worse than the conventional prediction based on an arbitrary guess for the renormalization scale. ......
Clustering $unicode{x2013}$ the tendency for neighbors of nodes to be connected $unicode{x2013}$ quantifies the coupling of a complex network to its underlying latent metric space. In random geometric graphs, clustering undergoes a continuous phase transition, separating a phase with finite clustering from a regime where clustering vanishes in the thermodynamic limit. We prove this geometric-to-nongeometric phase transition to be topological in nature, with atypical features such as diverging free energy and entropy as well as anomalous finite size scaling behavior. Moreover, a slow decay of clustering in the nongeometric phase implies that some real networks with relatively high levels of clustering may be better described in this regime.
To understand the formation, evolution, and function of complex systems, it is crucial to understand the internal organization of their interaction networks. Partly due to the impossibility of visualizing large complex networks, resolving network structure remains a challenging problem. Here we overcome this difficulty by combining the visual pattern recognition ability of humans with the high processing speed of computers to develop an exploratory method for discovering groups of nodes characterized by common network properties, including but not limited to communities of densely connected nodes. Without any prior information about the nature of the groups, the method simultaneously identifies the number of groups, the group assignment, and the properties that define these groups. The results of applying our method to real networks suggest the possibility that most group structures lurk undiscovered in the fast-growing inventory of social, biological, and technological networks of scientific interest.