Do you want to publish a course? Click here

Pose Imitation Constraints for Collaborative Robots

64   0   0.0 ( 0 )
 Added by Glebys Gonzalez
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Achieving human-like motion in robots has been a fundamental goal in many areas of robotics research. Inverse kinematic (IK) solvers have been explored as a solution to provide kinematic structures with anthropomorphic movements. In particular, numeric solvers based on geometry, such as FABRIK, have shown potential for producing human-like motion at a low computational cost. Nevertheless, these methods have shown limitations when solving for robot kinematic constraints. This work proposes a framework inspired by FABRIK for human pose imitation in real-time. The goal is to mitigate the problems of the original algorithm while retaining the resulting humanlike fluidity and low cost. We first propose a human constraint model for pose imitation. Then, we present a pose imitation algorithm (PIC), and its soft version (PICs) that can successfully imitate human poses using the proposed constraint system. PIC was tested on two collaborative robots (Baxter and YuMi). Fifty human demonstrations were collected for a bi-manual assembly and an incision task. Then, two performance metrics were obtained for both robots: pose accuracy with respect to the human and the percentage of environment occlusion/obstruction. The performance of PIC and PICs was compared against the numerical solver baseline (FABRIK). The proposed algorithms achieve a higher pose accuracy than FABRIK for both tasks (25%-FABRIK, 53%-PICs, 58%-PICs). In addition, PIC and its soft version achieve a lower percentage of occlusion during incision (10%-FABRIK, 4%-PICs, 9%-PICs). These results indicate that the PIC method can reproduce human poses and achieve key desired effects of human imitation.



rate research

Read More

We present PufferBot, an aerial robot with an expandable structure that may expand to protect a drones propellers when the robot is close to obstacles or collocated humans. PufferBot is made of a custom 3D-printed expandable scissor structure, which utilizes a one degree of freedom actuator with rack and pinion mechanism. We propose four designs for the expandable structure, each with unique characterizations for different situations. Finally, we present three motivating scenarios in which PufferBot may extend the utility of existing static propeller guard structures. The supplementary video can be found at: https://youtu.be/XtPepCxWcBg
The objective of this paper is to present a systematic review of existing sensor-based control methodologies for applications that involve direct interaction between humans and robots, in the form of either physical collaboration or safe coexistence. To this end, we first introduce the basic formulation of the sensor-servo problem, then present the most common approaches: vision-based, touch-based, audio-based, and distance-based control. Afterwards, we discuss and formalize the methods that integrate heterogeneous sensors at the control level. The surveyed body of literature is classified according to the type of sensor, to the way multiple measurements are combined, and to the target objectives and applications. Finally, we discuss open problems, potential applications, and future research directions.
We introduce shape-changing swarm robots. A swarm of self-transformable robots can both individually and collectively change their configuration to display information, actuate objects, act as tangible controllers, visualize data, and provide physical affordances. ShapeBots is a concept prototype of shape-changing swarm robots. Each robot can change its shape by leveraging small linear actuators that are thin (2.5 cm) and highly extendable (up to 20cm) in both horizontal and vertical directions. The modular design of each actuator enables various shapes and geometries of self-transformation. We illustrate potential application scenarios and discuss how this type of interface opens up possibilities for the future of ubiquitous and distributed shape-changing interfaces.
Physical embodiment is a required component for robots that are structurally coupled with their real-world environments. However, most socially interactive robots do not need to physically interact with their environments in order to perform their tasks. When and why should embodied robots be used instead of simpler and cheaper virtual agents? This paper reviews the existing work that explores the role of physical embodiment in socially interactive robots. This class consists of robots that are not only capable of engaging in social interaction with humans, but are using primarily their social capabilities to perform their desired functions. Socially interactive robots provide entertainment, information, and/or assistance; this last category is typically encompassed by socially assistive robotics. In all cases, such robots can achieve their primary functions without performing functional physical work. To comprehensively evaluate the existing body of work on embodiment, we first review work from established related fields including psychology, philosophy, and sociology. We then systematically review 65 studies evaluating aspects of embodiment published from 2003 to 2017 in major peer-reviewed robotics publication venues. We examine relevant aspects of the selected studies, focusing on the embodiments compared, tasks evaluated, social roles of robots, and measurements. We introduce three taxonomies for the types of robot embodiment, robot social roles, and human-robot tasks. These taxonomies are used to deconstruct the design and interaction spaces of socially interactive robots and facilitate analysis and discussion of the reviewed studies. We use this newly-defined methodology to critically discuss existing works, revealing topics within embodiment research for social interaction, assistive robotics, and service robotics.
RoomShift is a room-scale dynamic haptic environment for virtual reality, using a small swarm of robots that can move furniture. RoomShift consists of nine shape-changing robots: Roombas with mechanical scissor lifts. These robots drive beneath a piece of furniture to lift, move and place it. By augmenting virtual scenes with physical objects, users can sit on, lean against, place and otherwise interact with furniture with their whole body; just as in the real world. When the virtual scene changes or users navigate within it, the swarm of robots dynamically reconfigures the physical environment to match the virtual content. We describe the hardware and software implementation, applications in virtual tours and architectural design and interaction techniques.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا