Do you want to publish a course? Click here

LTLf Synthesis on Probabilistic Systems

73   0   0.0 ( 0 )
 Added by EPTCS
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Many systems are naturally modeled as Markov Decision Processes (MDPs), combining probabilities and strategic actions. Given a model of a system as an MDP and some logical specification of system behavior, the goal of synthesis is to find a policy that maximizes the probability of achieving this behavior. A popular choice for defining behaviors is Linear Temporal Logic (LTL). Policy synthesis on MDPs for properties specified in LTL has been well studied. LTL, however, is defined over infinite traces, while many properties of interest are inherently finite. Linear Temporal Logic over finite traces (LTLf) has been used to express such properties, but no tools exist to solve policy synthesis for MDP behaviors given finite-trace properties. We present two algorithms for solving this synthesis problem: the first via reduction of LTLf to LTL and the second using native tools for LTLf. We compare the scalability of these two approaches for synthesis and show that the native approach offers better scalability compared to existing automaton generation tools for LTL.



rate research

Read More

This paper presents a novel method for the automated synthesis of probabilistic programs. The starting point is a program sketch representing a finite family of finite-state Markov chains with related but distinct topologies, and a PCTL specification. The method builds on a novel inductive oracle that greedily generates counter-examples (CEs) for violating programs and uses them to prune the family. These CEs leverage the semantics of the family in the form of bounds on its best- and worst-case behaviour provided by a deductive oracle using an MDP abstraction. The method further monitors the performance of the synthesis and adaptively switches between the inductive and deductive reasoning. Our experiments demonstrate that the novel CE construction provides a significantly faster and more effective pruning strategy leading to acceleration of the synthesis process on a wide range of benchmarks. For challenging problems, such as the synthesis of decentralized partially-observable controllers, we reduce the run-time from a day to minutes.
We introduce the concept of structured synthesis for Markov decision processes where the structure is induced from finitely many pre-specified options for a system configuration. The resulting synthesis problem is in general a nonlinear programming problem (NLP) with integer variables. As solving NLPs is in general not feasible, we present an alternative approach. We present a transformation of models specified in the {PRISM} probabilistic programming language to models that account for all possible system configurations by means of nondeterministic choices. Together with a control module that ensures consistent configurations throughout the system, this transformation enables the use of optimized tools for model checking in a black-box fashion. While this transformation increases the size of a model, experiments with standard benchmarks show that the method provides a feasible approach for structured synthesis. Moreover, we demonstrate the usefulness along a realistic case study involving surveillance by unmanned aerial vehicles in a shipping facility.
Probabilistic programs are key to deal with uncertainty in e.g. controller synthesis. They are typically small but intricate. Their development is complex and error prone requiring quantitative reasoning over a myriad of alternative designs. To mitigate this complexity, we adopt counterexample-guided inductive synthesis (CEGIS) to automatically synthesise finite-state probabilistic programs. Our approach leverages efficient model checking, modern SMT solving, and counterexample generation at program level. Experiments on practically relevant case studies show that design spaces with millions of candidate designs can be fully explored using a few thousand verification queries.
Cell injection is a technique in the domain of biological cell micro-manipulation for the delivery of small volumes of samples into the suspended or adherent cells. It has been widely applied in various areas, such as gene injection, in-vitro fertilization (IVF), intracytoplasmic sperm injection (ISCI) and drug development. However, the existing manual and semi-automated cell injection systems require lengthy training and suffer from high probability of contamination and low success rate. In the recently introduced fully automated cell injection systems, the injection force plays a vital role in the success of the process since even a tiny excessive force can destroy the membrane or tissue of the biological cell. Traditionally, the force control algorithms are analyzed using simulation, which is inherently non-exhaustive and incomplete in terms of detecting system failures. Moreover, the uncertainties in the system are generally ignored in the analysis. To overcome these limitations, we present a formal analysis methodology based on probabilistic model checking to analyze a robotic cell injection system utilizing the impedance force control algorithm. The proposed methodology, developed using the PRISM model checker, allowed to find a discrepancy in the algorithm, which was not found by any of the previous analysis using the traditional methods.
We propose automated techniques for the verification and control of probabilistic real-time systems that are only partially observable. To formally model such systems, we define an extension of probabilistic timed automata in which local states are partially visible to an observer or controller. We give a probabilistic temporal logic that can express a range of quantitative properties of these models, relating to the probability of an events occurrence or the expected value of a reward measure. We then propose techniques to either verify that such a property holds or to synthesise a controller for the model which makes it true. Our approach is based on an integer discretisation of the models dense-time behaviour and a grid-based abstraction of the uncountable belief space induced by partial observability. The latter is necessarily approximate since the underlying problem is undecidable, however we show how both lower and upper bounds on numerical results can be generated. We illustrate the effectiveness of the approach by implementing it in the PRISM model checker and applying it to several case studies, from the domains of computer security and task scheduling.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا