Do you want to publish a course? Click here

Observing the thermalization of dark matter in neutron stars

106   0   0.0 ( 0 )
 Added by Nirmal Raj
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A promising probe to unmask particle dark matter is to observe its effect on neutron stars, the prospects of which depend critically on whether captured dark matter thermalizes in a timely manner with the stellar core via repeated scattering with the Fermi-degenerate medium. In this work we estimate the timescales for thermalization for multiple scenarios. These include: (a) spin-0 and spin-$frac{1}{2}$ dark matter, (b) scattering on non-relativistic neutron and relativistic electron targets accounting for the respective kinematics, (c) interactions via a range of Lorentz-invariant structures, (d) mediators both heavy and light in comparison to the typical transfer momenta in the problem. We discuss the analytic behavior of the thermalization time as a function of the dark matter and mediator masses, and the stellar temperature. Finally, we identify parametric ranges where both stellar capture is efficient and thermalization occurs within the age of the universe. For dark matter that can annihilate in the core, these regions indicate parametric ranges that can be probed by upcoming infrared telescopes observing cold neutron stars.



rate research

Read More

We discuss the issue on dark matter capture by neutron stars, in particular the process of dark matter thermalization, by which the scattering cross section and the mass of dark matter can be constrained. At first, we evaluate the thermalization time of self-interacting dark matter and find the effect of the self-interaction is small compared with that of the interaction with nucleons. Then we generalize the thermalization time by introducing a set of new parameters. We show how the cross section is affected by those new parameters. It turns out that the cross section gets very sensitive to and strongly constrained by one of the new parameters.
Dark matter can capture in neutron stars and heat them to observable luminosities. We study relativistic scattering of dark matter on highly degenerate electrons. We develop a Lorentz invariant formalism to calculate the capture probability of dark matter that accounts for the relativistic motion of the target particles and Pauli exclusion principle. We find that the actual capture probability can be five orders of magnitude larger than the one estimated using a nonrelativistic approach. For dark matter masses $10~{rm eV}textup{--}10~{rm PeV}$, neutron star heating complements and can be more sensitive than terrestrial direct detection searches. The projected sensitivity regions exhibit characteristic features that demonstrate a rich interplay between kinematics and Pauli blocking of the DM--electron system. Our results show that old neutron stars could be the most promising target for discovering leptophilic dark matter.
We study the probability for nucleation of quark matter droplets in the dense cold cores of old neutron stars induced by the presence of a self-annihilating dark matter component, $chi$. Using a parameterized form of the equation of state for hadronic and quark phases of ordinary matter, we explore the thermodynamic conditions under which droplet formation is facilitated by the energy injection from $chi$ self-annihilations. We obtain the droplet nucleation time as a function of the dark matter candidate mass, $m_chi$. We discuss further observational consequences.
Neutron stars harbour matter under extreme conditions, providing a unique testing ground for fundamental interactions. We recently developed an improved treatment of dark matter (DM) capture in neutron stars that properly incorporates many of the important physical effects, and outlined useful analytic approximations that are valid when the scattering amplitude is independent of the centre of mass energy. We now extend that analysis to all interaction types. We also discuss the effect of going beyond the zero-temperature approximation, which provides a boost to the capture rate of low mass dark matter, and give approximations for the dark matter up-scattering rate and evaporation mass. We apply these results to scattering of dark matter from leptonic targets, for which a correct relativistic description is essential. We find that the potential neutron star sensitivity to DM-lepton scattering cross sections greatly exceeds electron-recoil experiments, particularly in the sub-GeV regime, with a sensitivity to sub-MeV DM well beyond the reach of future terrestrial experiments.
We present a quantitative analysis of superfluidity and superconductivity in dense matter from observations of isolated neutron stars in the context of the minimal cooling model. Our new approach produces the best fit neutron triplet superfluid critical temperature, the best fit proton singlet superconducting critical temperature, and their associated statistical uncertainties. We find that the neutron triplet critical temperature is likely $2.09^{+4.37}_{-1.41} times 10^{8}$ K and that the proton singlet critical temperature is $7.59^{+2.48}_{-5.81} times 10^{9}$ K. However, we also show that this result only holds if the Vela neutron star is not included in the data set. If Vela is included, the gaps increase significantly to attempt to reproduce Velas lower temperature given its young age. Further including neutron stars believed to have carbon atmospheres increases the neutron critical temperature and decreases the proton critical temperature. Our method demonstrates that continued observations of isolated neutron stars can quantitatively constrain the nature of superfluidity in dense matter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا