No Arabic abstract
Quiet sun meterwave emission arises from thermal bremsstrahlung in the MK corona, and can potentially be a rich source of coronal diagnostics. On its way to the observer, it gets modified substantially due to the propagation effects - primarily refraction and scattering - through the magnetized and turbulent coronal medium, leading to the redistribution of the intensity in the image plane. By comparing the full-disk meterwave solar maps during a quiet solar period and the modelled thermal bremsstrahlung emission, we characterise these propagation effects. The solar radio maps between 100 and 240 MHz come from the Murchison Widefield Array. FORWARD package is used to simulate thermal bremsstrahlung images using the self-consistent Magnetohydrodynamic Algorithm outside a Sphere coronal model. The FORWARD model does not include propagation effects. The differences between the observed and modelled maps are interpreted to arise due to scattering and refraction. There is a good general correspondence between the predicted and observed brightness distributions, though significant differences are also observed. We find clear evidence for the presence of significant propagation effects, including anisotropic scattering. The observed radio size of the Sun is 25--30% larger in area. The emission peak corresponding to the only visible active region shifts by 8--11 and its size increases by 35--40%. Our simple models suggest that the fraction of scattered flux density is always larger than a few tens of percent, and varies significantly between different regions. We estimate density inhomogeneities to be in the range 1--10%.
Using Atacama Large Millimeter/submillimeter Array (ALMA) observations of the quiet Sun at 1.26 and 3 mm, we study spatially resolved oscillations and transient brightenings, i.e. small, weak events of energy release. Both phenomena may have a bearing on the heating of the chromosphere. At 1.26 mm, in addition to power spectra of the original data, we degraded the images to the spatial resolution of the 3 mm images and used fields of view of equal area for both data sets. The detection of transient brightenings was made after the oscillations were removed. At both frequencies we detected p-mode oscillations in the range 3.6-4.4 mHz. In the corrected data sets, the oscillations at 1.26 and 3 mm showed brightness temperature fluctuations of ~1.7-1.8% with respect to the average quiet Sun, corresponding to 137 and 107 K, respectively. They represented a fraction of 0.55-0.68 of the full power spectrum and their energy density at 1.26 mm was 0.03 erg cm$^{-3}$. We detected 77 transient brightenings at 1.26 mm and 115 at 3 mm. Although the majority of the 1.26 mm events occurred in cell interior, their occurrence rate per unit area was higher than that of the 3 mm events. The computed low-end energy of the 1.26 mm transient brightenings ($1.8 times 10^{23}$ erg) is among the smallest ever reported, irrespective of the wavelength of observation. However, their power per unit area is smaller than that of the 3 mm events, probably due to the detection of many weak 1.26 mm events. We also found that ALMA bright network structures corresponded to dark mottles/spicules seen in broadband H$alpha$ images from the GONG network.
We present an initial study of one of the first ALMA Band 3 observations of the Sun with the aim to characterise the diagnostic potential of brightness temperatures measured with ALMA on the Sun. The observation covers 48min at a cadence of 2s targeting a Quiet Sun region at disk-centre. Corresponding time series of brightness temperature maps are constructed with the first version of the Solar ALMA Pipeline (SoAP) and compared to simultaneous SDO observations. The angular resolution of the observations is set by the synthesized beam (1.4x2.1as). The ALMA maps exhibit network patches, internetwork regions and also elongated thin features that are connected to large-scale magnetic loops as confirmed by a comparison with SDO maps. The ALMA Band 3 maps correlate best with the SDO/AIA 171, 131 and 304 channels in that they exhibit network features and, although very weak in the ALMA maps, imprints of large-scale loops. A group of compact magnetic loops is very clearly visible in ALMA Band 3. The brightness temperatures in the loop tops reach values of about 8000-9000K and in extreme moments up to 10 000K. ALMA Band 3 interferometric observations from early observing cycles already reveal temperature differences in the solar chromosphere. The weak imprint of magnetic loops and the correlation with the 171, 131, and 304 SDO channels suggests though that the radiation mapped in ALMA Band 3 might have contributions from a larger range of atmospheric heights than previously assumed but the exact formation height of Band 3 needs to be investigated in more detail. The absolute brightness temperature scale as set by Total Power measurements remains less certain and must be improved in the future. Despite these complications and the limited angular resolution, ALMA Band 3 observations have large potential for quantitative studies of the small-scale structure and dynamics of the solar chromosphere.
IMaX/Sunrise has recently reported the temporal evolution of highly dynamic and strongly Doppler shifted Stokes V signals in the quiet Sun. We attempt to identify the same quiet-Sun jets in the Hinode spectropolarimeter (SP) data set. We generate combinations of linear polarization magnetograms with blue- and redshifted far-wing circular polarization magnetograms to allow an easy identification of the quiet-Sun jets. The jets are identified in the Hinode data where both red- and blueshifted cases are often found in pairs. They appear next to regions of transverse fields that exhibit quiet-Sun neutral lines. They also have a clear tendency to occur in the outer boundary of the granules. These regions always display highly displaced and anomalous Stokes V profiles. The quiet Sun is pervaded with jets formed when new field regions emerge at granular scales loaded with horizontal field lines that interact with their surroundings. This interaction is suggestive of some form of reconnection of the involved field lines that generates the observed high speed flows.
We investigate the fine structure of magnetic fields in the atmosphere of the quiet Sun. We use photospheric magnetic field measurements from {sc Sunrise}/IMaX with unprecedented spatial resolution to extrapolate the photospheric magnetic field into higher layers of the solar atmosphere with the help of potential and force-free extrapolation techniques. We find that most magnetic loops which reach into the chromosphere or higher have one foot point in relatively strong magnetic field regions in the photosphere. $91%$ of the magnetic energy in the mid chromosphere (at a height of 1 Mm) is in field lines, whose stronger foot point has a strength of more than 300 G, i.e. above the equipartition field strength with convection. The loops reaching into the chromosphere and corona are also found to be asymmetric in the sense that the weaker foot point has a strength $B < 300$ G and is located in the internetwork. Such loops are expected to be strongly dynamic and have short lifetimes, as dictated by the properties of the internetwork fields.
We present a visual determination of the number of bright points (BPs) existing in the quiet Sun, which are structures though to trace intense kG magnetic concentrations. The measurement is based on a 0.1 arcsec angular resolution G-band movie obtained with the Swedish Solar Telescope at the solar disk center. We find 0.97 BPs/Mm^2, which is a factor three larger than any previous estimate. It corresponds to 1.2 BPs per solar granule. Depending on the details of the segmentation, the BPs cover between 0.9% and 2.2% of the solar surface. Assuming their field strength to be 1.5 kG, the detected BPs contribute to the solar magnetic flux with an unsigned flux density between 13 G and 33 G. If network and inter-network regions are counted separately, they contain 2.2 BPs/Mm^2 and 0.85 BPs/Mm^2, respectively.