No Arabic abstract
The significance of spin-lattice coupling in the phase diagram of the quantum spin-icepyrochlore Tb2Ti2O7 has been a topic of debate for some time. Here, we focus on the aspect of vibronic coupling, which occurs between the Tb3+ electronic levels and transverse acoustic phonons, by studying their dependence on a magnetic field applied along the cubic h111i direction. Our experimental THz spectroscopy measurements, combined with quantitative theoretical quantum calculations, show that indeed vibronic effects are observed at 3 K. An analysis incorporating quadrupolar spin-lattice effects in the Hamiltonian is therefore relevant in this compound, which is no longer optically isotropic but magnetically birefringent.
The frustrated one-dimensional (1D) quantum magnet LiCuSbO$_4$ is one rare realization of the $J_1-J_2$ spin chain model with an easily accessible saturation field, formerly estimated to 12~T. Exotic multipolar nematic phases were theoretically predicted in such compounds just below the saturation field, but without unambiguous experimental observation so far. In this paper we present extensive experimental research of the compound in the wide temperature (30mK$-$300K) and field (0$-$13.3T) range by muon spin rotation ($mu$SR), $^7$Li nuclear magnetic resonance (NMR) and magnetic susceptibility (SQUID). $mu$SR experiments in zero magnetic field demonstrate the absence of long range 3D ordering down to 30mK. Together with former heat capacity data [S.E. Dutton emph{et al}, Phys. Rev. Lett. 108, 187206 (2012)], magnetic susceptibility measurements suggest short range correlated vector chiral phase in the field range $0-4$T. In the intermediate field values (5$-$12T), the system enters in a 3D ordered spin density wave phase with 0.75$mu_B$ per copper site at lowest temperatures (125mK), estimated by NMR. At still higher field, the magnetization is found to be saturated above 13T where the spin lattice $T_1^{-1}$ relaxation reveals a spin gap estimated to 3.2(2)K. We narrow down the possibility of observing a multipolar nematic phase to the range 12.5$-$13T.
The nature of the low temperature ground state of the pyrochlore compound Tb2Ti2O7 remains a puzzling issue. Dynamic fluctuations and short-range correlations persist down to 50 mK, as evidenced by microscopic probes. In parallel, magnetization measurements show irreversibilities and glassy behavior below 200 mK. We have performed magnetization and AC susceptibility measurements on four single crystals down to 57 mK. We did not observe a clear plateau in the magnetization as a function of field along the [111] direction, as suggested by the quantum spin ice model. In addition to a freezing around 200 mK, slow dynamics are observed in the AC susceptibility up to 4 K. The overall frequency dependence cannot be described by a canonical spin-glass behavior.
The competing magnetic ground states of the itinerant magnet EuCuSb, which has a hexagonal layered structure, were studied via magnetization, resistivity, and neutron diffraction measurements on single-crystal samples. EuCuSb has a three-dimensional semimetallic band structure as confirmed by band calculation and angle-resolved photoelectron spectroscopy, consistent with the nearly isotropic metallic conductivity in the paramagnetic state. However, below the antiferromagnetic transition temperature of TN1 (8.5 K), the resistivity, especially along the hexagonal axis, increases significantly. This implies the emergence of anisotropic magnetic ordering coupled to the conducting electrons. Neutron diffraction measurements show that the Eu spins, which order ferromagnetically within each layer, are collinearly modulated (up-up-down-down) along the hexagonal axis below TN1, followed by the partial emergence of helical spin modulation below TN2 (6 K). Based on the observation of anomalous magnetoresistance with hysteretic behavior, we discuss the competing nature of the ground state inherent in a frustrated Heisenberg-like spin system with a centrosymmetric structure.
Two geometrically frustrated pyrochlore stannates, undergoing long range magnetic order below 1K, were investigated at very low temperature. Anomalies in the behaviour of hyperfine quantities are found, by 155Gd Mossbauer spectroscopy in Gd2Sn2O7 and by low temperature specific heat measurements in Tb2Sn2O7. They are interpreted in terms of fluctuations of the correlated Gd or Tb spins, using a model two-level system (the nuclear spins) submitted to a randomly fluctuating (hyperfine) field.
In a ferromagnet, the spin excitations are the well-studied magnons. In frustrated quantum magnets, long-range magnetic order fails to develop despite a large exchange coupling between the spins. In contrast to the magnons in conventional magnets, their spin excitations are poorly understood. Are they itinerant or localized? Here we show that the thermal Hall conductivity $kappa_{xy}$ provides a powerful probe of spin excitations in the quantum spin ice pyrochlore Tb$_2$Ti$_2$O$_7$. The thermal Hall response is large even though the material is transparent. The Hall response arises from spin excitations with specific characteristics that distinguish them from magnons. At low temperature ($T<$ 1 K), the thermal conductivity imitates that of a dirty metal. Using the Hall angle, we construct a phase diagram showing how the excitations are suppressed by a magnetic field.