Do you want to publish a course? Click here

Solving Dynamic Optimization Problems to a Specified Accuracy: An Alternating Approach using Integrated Residuals

179   0   0.0 ( 0 )
 Added by Yuanbo Nie
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We propose a novel direct transcription and solution method for solving nonlinear, continuous-time dynamic optimization problems. Instead of forcing the dynamic constraints to be satisfied only at a selected number of points as in direct collocation, the new approach alternates between minimizing and constraining the squared norm of the dynamic constraint residuals integrated along the whole solution trajectories. As a result, the method can 1) obtain solutions of higher accuracy for the same mesh compared to direct collocation methods, 2) enables a flexible trade-off between solution accuracy and optimality, 3) provides reliable solutions for challenging problems, including those with singular arcs and high-index differential algebraic equations.



rate research

Read More

154 - Chao Shang , Fengqi You 2018
Stochastic model predictive control (SMPC) has been a promising solution to complex control problems under uncertain disturbances. However, traditional SMPC approaches either require exact knowledge of probabilistic distributions, or rely on massive scenarios that are generated to represent uncertainties. In this paper, a novel scenario-based SMPC approach is proposed by actively learning a data-driven uncertainty set from available data with machine learning techniques. A systematical procedure is then proposed to further calibrate the uncertainty set, which gives appropriate probabilistic guarantee. The resulting data-driven uncertainty set is more compact than traditional norm-based sets, and can help reducing conservatism of control actions. Meanwhile, the proposed method requires less data samples than traditional scenario-based SMPC approaches, thereby enhancing the practicability of SMPC. Finally the optimal control problem is cast as a single-stage robust optimization problem, which can be solved efficiently by deriving the robust counterpart problem. The feasibility and stability issue is also discussed in detail. The efficacy of the proposed approach is demonstrated through a two-mass-spring system and a building energy control problem under uncertain disturbances.
This paper considers the problem of designing accelerated gradient-based algorithms for optimization and saddle-point problems. The class of objective functions is defined by a generalized sector condition. This class of functions contains strongly convex functions with Lipschitz gradients but also non-convex functions, which allows not only to address optimization problems but also saddle-point problems. The proposed design procedure relies on a suitable class of Lyapunov functions and on convex semi-definite programming. The proposed synthesis allows the design of algorithms that reach the performance of state-of-the-art accelerated gradient methods and beyond.
In this effort, a novel operator theoretic framework is developed for data-driven solution of optimal control problems. The developed methods focus on the use of trajectories (i.e., time-series) as the fundamental unit of data for the resolution of optimal control problems in dynamical systems. Trajectory information in the dynamical systems is embedded in a reproducing kernel Hilbert space (RKHS) through what are called occupation kernels. The occupation kernels are tied to the dynamics of the system through the densely defined Liouville operator. The pairing of Liouville operators and occupation kernels allows for lifting of nonlinear finite-dimensional optimal control problems into the space of infinite-dimensional linear programs over RKHSs.
Despite significant advances on distributed continuous-time optimization of multi-agent networks, there is still lack of an efficient algorithm to achieve the goal of distributed optimization at a pre-specified time. Herein, we design a specified-time distributed optimization algorithm for connected agents with directed topologies to collectively minimize the sum of individual objective functions subject to an equality constraint. With the designed algorithm, the settling time of distributed optimization can be exactly predefined. The specified selection of such a settling time is independent of not only the initial conditions of agents, but also the algorithm parameters and the communication topologies. Furthermore, the proposed algorithm can realize specified-time optimization by exchanging information among neighbours only at discrete sampling instants and thus reduces the communication burden. In addition, the equality constraint is always satisfied during the whole process, which makes the proposed algorithm applicable to online solving distributed optimization problems such as economic dispatch. For the special case of undirected communication topologies, a reduced-order algorithm is also designed. Finally, the effectiveness of the theoretical analysis is justified by numerical simulations.
Any industrial system goes along with objectives to be met (e.g. economic performance), disturbances to handle (e.g. market fluctuations, catalyst decay, unexpected variations in uncontrolled flow rates and compositions,...), and uncertainties about its behavior. In response to these, decisions must be taken and instructions be sent to the operators to drive and maintain the plant at satisfactory, yet potentially changing operating conditions. Over the past thirty years many methods have been created and developed to answer these questions. In particular, the field of Real-Time Optimization (RTO) has emerged that, among others, encompasses methods that allow the systematic improvement of the performances of the industrial system, using plant measurements and a potentially inaccurate tool to predict its behaviour, generally in the form of a model. Even though the definition of RTO can differ between authors, inside and outside the process systems engineering community, there is currently no RTO method, which is deemed capable of fully automating the aforementioned decision-making process. This thesis consists of a series of contributions in this direction, which brings RTO closer to being capable of a full plant automation. Keywords: Real-time optimization, Decision-making, Optimization, Reduced-order-model optimization, Autopilot for steady-state processes, Operational research.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا