No Arabic abstract
We perform direct numerical simulation (DNS) and large eddy simulation (LES) of an initially spherical region of turbulence evolving in free space. The computations are performed with a lattice Greens function method, which allows the exact free-space boundary conditions to be imposed on a compact vortical region. LES simulations are conducted with the stretched vortex sub-grid stress model. The initial condition is spherically windowed, isotropic homogeneous incompressible turbulence. We study the spectrum and statistics of the decaying turbulence and compare the results with decaying isotropic turbulence, including cases representing different low wavenumber behavior of the energy spectrum (i.e. k^2 versus k^4). At late times the turbulent sphere expands with both mean radius and integral scale showing similar time-wise growth exponents. The low wavenumber behavior has little effect on the inertial scales, and we find that decay rates follow Saffman (1967) predictions in both cases, at least until about 400 initial eddy turnover times. The boundary of the spherical region develops intermittency and features ejections of vortex rings. These are shown to occur at the integral scale of the initial turbulence field and are hypothesized to occur due to a local imbalance of impulse on this scale.
A public database system archiving a direct numerical simulation (DNS) data set of isotropic, forced turbulence is described in this paper. The data set consists of the DNS output on $1024^3$ spatial points and 1024 time-samples spanning about one large-scale turn-over timescale. This complete $1024^4$ space-time history of turbulence is accessible to users remotely through an interface that is based on the Web-services model. Users may write and execute analysis programs on their host computers, while the programs make subroutine-like calls that request desired parts of the data over the network. The users are thus able to perform numerical experiments by accessing the 27 Terabytes of DNS data using regular platforms such as laptops. The architecture of the database is explained, as are some of the locally defined functions, such as differentiation and interpolation. Test calculations are performed to illustrate the usage of the system and to verify the accuracy of the methods. The database is then used to analyze a dynamical model for small-scale intermittency in turbulence. Specifically, the dynamical effects of pressure and viscous terms on the Lagrangian evolution of velocity increments are evaluated using conditional averages calculated from the DNS data in the database. It is shown that these effects differ considerably among themselves and thus require different modeling strategies in Lagrangian models of velocity increments and intermittency.
Turbulence structure resulting from multi-fluid or multi-species, variable-density isotropic turbulence interaction with a Mach 2 shock is studied using turbulence-resolving shock-capturing simulations and Eulerian (grid) and Lagrangian (particle) methods. The complex roles density play in the modification of turbulence by the shock wave are identified. Statistical analyses of the velocity gradient tensor (VGT) show that the density variations significantly change the turbulence structure and flow topology. Specifically, a stronger symmetrization of the joint probability density function (PDF) of second and third invariants of the anisotropic velocity gradient tensor, PDF$(Q^ast, R^ast)$, as well as the PDF of the vortex stretching contribution to the enstrophy equation, are observed in the multi-species case. Furthermore, subsequent to the interaction with the shock, turbulent statistics also acquire a differential distribution in regions having different densities. This results in a nearly symmetrical PDF$(Q^ast, R^ast)$ in heavy fluid regions, while the light fluid regions retain the characteristic tear-drop shape. To understand this behavior and the return to standard turbulence structure as the flow evolves away from the shock, Lagrangian dynamics of the VGT and its invariants are studied by considering particle residence times and conditional particle variables in different flow regions. The pressure Hessian contributions to the VGT invariants transport equations are shown to be not only affected by the shock wave, but also by the density in the multi-fluid case, making them critically important to the flow dynamics and turbulence structure.
Synthetic turbulence models are a useful tool that provide realistic representations of turbulence, necessary to test theoretical results, to serve as background fields in some numerical simulations, and to test analysis tools. Models of 1D and 3D synthetic turbulence previously developed still required large computational resources. A new wavelet-based model of synthetic turbulence, able to produce a field with tunable spectral law, intermittency and anisotropy, is presented here. The rapid algorithm introduced, based on the classic $p$-model of intermittent turbulence, allows to reach a broad spectral range using a modest computational effort. The model has been tested against the standard diagnostics for intermittent turbulence, i.e. the spectral analysis, the scale-dependent statistics of the field increments, and the multifractal analysis, all showing an excellent response.
We propose a new model of turbulence for use in large-eddy simulations (LES). The turbulent force, represented here by the turbulent Lamb vector, is divided in two contributions. The contribution including only subfilter fields is deterministically modeled through a classical eddy-viscosity. The other contribution including both filtered and subfilter scales is dynamically computed as solution of a generalized (stochastic) Langevin equation. This equation is derived using Rapid Distortion Theory (RDT) applied to the subfilter scales. The general friction operator therefore includes both advection and stretching by the resolved scale. The stochastic noise is derived as the sum of a contribution from the energy cascade and a contribution from the pressure. The LES model is thus made of an equation for the resolved scale, including the turbulent force, and a generalized Langevin equation integrated on a twice-finer grid. The model is validated by comparison to DNS and is tested against classical LES models for isotropic homogeneous turbulence, based on eddy viscosity. We show that even in this situation, where no walls are present, our inclusion of backscatter through the Langevin equation results in a better description of the flow.
Intense fluctuations of energy dissipation rate in turbulent flows result from the self-amplification of strain rate via a quadratic nonlinearity, with contributions from vorticity (via the vortex stretching mechanism) and the pressure Hessian tensor, which we analyze here using direct numerical simulations of isotropic turbulence in periodic domains of up to $12288^3$ grid points, and Taylor-scale Reynolds numbers in the range $140-1300$. We extract the statistics of various terms involved in amplification of strain and additionally condition them on the magnitude of strain. We find that strain is overall self-amplified by the quadratic nonlinearity, and depleted via vortex stretching; whereas pressure Hessian acts to redistribute strain fluctuations towards the mean-field and thus depleting intense strain. Analyzing the intense fluctuations of strain in terms of its eigenvalues reveals that the net amplification is solely produced by the third eigenvalue, resulting in strong compressive action. In contrast, the self-amplification terms acts to deplete the other two eigenvalues, whereas vortex stretching acts to amplify them, both effects canceling each other almost perfectly. The effect of the pressure Hessian for each eigenvalue is qualitatively similar to that of vortex stretching, but significantly weaker in magnitude. Our results conform with the familiar notion that intense strain is organized in sheet-like structures, which are in the vicinity of, but never overlap with regions of intense vorticity due to fundamental differences in their amplifying mechanisms.