Do you want to publish a course? Click here

The MOSDEF Survey: The First Direct Measurements of the Nebular Dust Attenuation Curve at High Redshift

99   0   0.0 ( 0 )
 Added by Naveen Reddy
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use a sample of 532 star-forming galaxies at redshifts $zsim 1.4-2.6$ with deep rest-frame optical spectra from the MOSFIRE Deep Evolution Field (MOSDEF) survey to place the first constraints on the nebular attenuation curve at high redshift. Based on the first five low-order Balmer emission lines detected in the composite spectra of these galaxies (${rm Halpha}$ through ${rm Hepsilon}$), we derive a nebular attenuation curve that is similar in shape to that of the Galactic extinction curve, suggesting that the dust covering fraction and absorption/scattering properties along the lines-of-sight to massive stars at high redshift are similar to those of the average Milky Way sightline. The curve derived here implies nebular reddening values that are on average systematically larger than those derived for the stellar continuum. In the context of stellar population synthesis models that include the effects of stellar multiplicity, the difference in reddening of the nebular lines and stellar continuum may imply molecular cloud crossing timescales that are a factor of $gtrsim 3times$ longer than those inferred for local molecular clouds, star-formation rates that are constant or increasing with time such that newly-formed and dustier OB associations always dominate the ionizing flux, and/or that the dust responsible for reddening the nebular emission may be associated with non-molecular (i.e., ionized and neutral) phases of the ISM. Our analysis points to a variety of investigations of the nebular attenuation curve that will be enabled with the next generation of ground- and space-based facilities.



rate research

Read More

We present results on the dust attenuation curve of z~2 galaxies using early observations from the MOSFIRE Deep Evolution Field (MOSDEF) survey. Our sample consists of 224 star-forming galaxies with nebular spectroscopic redshifts in the range z= 1.36-2.59 and high S/N measurements of, or upper limits on, the H-alpha and H-beta emission lines obtained with Keck/MOSFIRE. We construct composite SEDs of galaxies in bins of specific SFR and Balmer optical depth in order to directly constrain the dust attenuation curve from the UV through near-IR for typical star-forming galaxies at high redshift. Our results imply an attenuation curve that is very similar to the SMC extinction curve at wavelengths redward of 2500 Angstroms. At shorter wavelengths, the shape of the curve is identical to that of the Calzetti relation, but with a lower normalization (R_V). Hence, the new attenuation curve results in SFRs that are ~20% lower, and log stellar masses that are 0.16 dex lower, than those obtained with the Calzetti attenuation curve. Moreover, we find that the difference in the reddening---and the total attenuation---of the ionized gas and stellar continuum correlates strongly with SFR, such that for dust-corrected SFRs larger than 20 Msun/yr assuming a Chabrier IMF, the nebular emission lines suffer an increasing degree of obscuration relative to the continuum. A simple model that can account for these trends is one in which the UV through optical stellar continuum is dominated by a population of less reddened stars, while the nebular line and bolometric luminosities become increasingly dominated by dustier stellar populations for galaxies with large SFRs, as a result of the increased dust enrichment that accompanies such galaxies. Consequently, UV- and SED-based SFRs may underestimate the total SFR at even modest levels of ~20 Msun/yr. [Abridged]
We derive the UV-optical stellar dust attenuation curve of galaxies at z=1.4-2.6 as a function of gas-phase metallicity. We use a sample of 218 star-forming galaxies, excluding those with very young or heavily obscured star formation, from the MOSFIRE Deep Evolution Field (MOSDEF) survey with H$alpha$, H$beta$, and [NII]$lambda 6585$ spectroscopic measurements. We constrain the shape of the attenuation curve by comparing the average flux densities of galaxies sorted into bins of dust obscuration using Balmer decrements, i.e., H$alpha$-to-H$beta$ luminosities. The average attenuation curve for the high-metallicity sample (12+log(O/H)>8.5, corresponding to $M_*gtrsim10^{10.4},M_{odot}$) has a shallow slope, identical to that of the Calzetti local starburst curve, and a significant UV 2175A extinction bump that is $sim 0.5times$ the strength of the Milky Way bump. On the other hand, the average attenuation curve of the low-metallicity sample (12+log(O/H) $sim 8.2-8.5$) has a steeper slope similar to that of the SMC curve, only consistent with the Calzetti slope at the $3sigma$ level. The UV bump is not detected in the low-metallicity curve, indicating the relative lack of the small dust grains causing the bump at low metallicities. Furthermore, we find that on average the nebular reddening (E(B-V)) is a factor of 2 times larger than that of the stellar continuum for galaxies with low metallicities, while the nebular and stellar reddening are similar for galaxies with higher metallicities. The latter is likely due to a high surface density of dusty clouds embedding the star forming regions but also reddening the continuum in the high-metallicity galaxies.
We present the first measurements of the shape of the far-ultraviolet (far-UV; lambda=950-1500 A) dust attenuation curve at high redshift (z~3). Our analysis employs rest-frame UV spectra of 933 galaxies at z~3, 121 of which have very deep spectroscopic observations (>7 hrs) at lambda=850-1300 A, with the Low Resolution Imaging Spectrograph on the Keck Telescope. By using an iterative approach in which we calculate the ratios of composite spectra in different bins of continuum color excess, E(B-V), we derive a dust curve that implies a lower attenuation in the far-UV for a given E(B-V) than those obtained with standard attenuation curves. We demonstrate that the UV composite spectra of z~3 galaxies can be modeled well by assuming our new attenuation curve, a high covering fraction of HI, and absorption from the Lyman-Werner bands of H2 with a small (<20%) covering fraction. The low covering fraction of H2 relative to that of the HI and dust suggests that most of the dust in the ISM of typical galaxies at z~3 is unrelated to the catalysis of H2, and is associated with other phases of the ISM (i.e., the ionized and neutral gas). The far-UV dust curve implies a factor of ~2 lower dust attenuation of Lyman continuum (ionizing) photons relative to those inferred from the most commonly assumed attenuation curves for L* galaxies at z~3. Our results may be utilized to assess the degree to which ionizing photons are attenuated in HII regions or, more generally, in the ionized or low column density (N(HI)<10^17.2 cm^-2) neutral ISM of high-redshift galaxies.
Dust attenuation affects nearly all observational aspects of galaxy evolution, yet very little is known about the form of the dust-attenuation law in the distant Universe. Here, we model the spectral energy distributions (SEDs) of galaxies at z = 1.5--3 from CANDELS with rest-frame UV to near-IR imaging under different assumptions about the dust law, and compare the amount of inferred attenuated light with the observed infrared (IR) luminosities. Some individual galaxies show strong Bayesian evidence in preference of one dust law over another, and this preference agrees with their observed location on the plane of infrared excess (IRX, $L_{text{TIR}}/L_{text{UV}}$) and UV slope ($beta$). We generalize the shape of the dust law with an empirical model, $A_{lambda,delta}=E(B-V) k_lambda (lambda/lambda_V)^delta$ where $k_lambda$ is the dust law of Calzetti et al. (2000), and show that there exists a correlation between the color excess ${E(B-V)}$ and tilt $delta$ with ${delta=(0.62pm0.05)log(E(B-V))}$+ ${(0.26~pm~0.02)}$. Galaxies with high color excess have a shallower, starburst-like law, and those with low color excess have a steeper, SMC-like law. Surprisingly, the galaxies in our sample show no correlation between the shape of the dust law and stellar mass, star-formation rate, or $beta$. The change in the dust law with color excess is consistent with a model where attenuation is caused by by scattering, a mixed star-dust geometry, and/or trends with stellar population age, metallicity, and dust grain size. This rest-frame UV-to-near-IR method shows potential to constrain the dust law at even higher ($z>3$) redshifts.
We present results on the properties of neon emission in $zsim2$ star-forming galaxies drawn from the MOSFIRE Deep Evolution Field (MOSDEF) survey. Doubly-ionized neon ([NeIII]3869) is detected at $geq3sigma$ in 61 galaxies, representing $sim$25% of the MOSDEF sample with H$alpha$, H$beta$, and [OIII]$5007$ detections at similar redshifts. We consider the neon emission-line properties of both individual galaxies with [NeIII]3869 detections and composite $zsim2$ spectra binned by stellar mass. With no requirement of [NeIII]3869 detection, the latter provide a more representative picture of neon emission-line properties in the MOSDEF sample. The [NeIII]3869/[OII]3727 ratio (Ne3O2) is anti-correlated with stellar mass in $zsim2$ galaxies, as expected based on the mass-metallicity relation. It is also positively correlated with the [OIII]$5007$/[OII]$3727$ ratio (O32), but $zsim2$ line ratios are offset towards higher Ne3O2 at fixed O32, compared with both local star-forming galaxies and individual H~II regions. Despite the offset towards higher Ne3O2 at fixed O32 at $zsim2$, biases in inferred Ne3O2-based metallicity are small. Accordingly, Ne3O2 may serve as an important metallicity indicator deep into the reionization epoch. Analyzing additional rest-optical line ratios including [NeIII]$3869$/[OIII]$5007$ (Ne3O3) and [OIII]$5007$/H$beta$ (O3H$beta$), we conclude that the nebular emission-line ratios of $zsim2$ star-forming galaxies suggest a harder ionizing spectrum (lower stellar metallicity, i.e., Fe/H) at fixed gas-phase oxygen abundance, compared to systems at $zsim0$. These new results based on neon lend support to the physical picture painted by oxygen, nitrogen, hydrogen, and sulfur emission, of an ionized ISM in high-redshift star-forming galaxies irradiated by chemically young, $alpha$-enhanced massive stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا