Do you want to publish a course? Click here

Leveraging HST with MUSE: II. Na-abundance variations in intermediate age star clusters

67   0   0.0 ( 0 )
 Added by Silvia Martocchia
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ancient ($>$10 Gyr) globular clusters (GCs) show chemical abundance variations in the form of patterns among certain elements, e.g. N correlates with Na and anti-correlates with O. Recently, N abundance spreads have also been observed in massive star clusters that are significantly younger than old GCs, down to an age of $sim$2 Gyr. However, so far N has been the only element found to vary in such young objects. We report here the presence of Na abundance variations in the intermediate age massive star clusters NGC 416 ($sim$6.5 Gyr old) and Lindsay 1 ($sim$7.5 Gyr old) in the Small Magellanic Cloud, by combining HST and ESO-VLT MUSE observations. Using HST photometry we were able to construct chromosome maps and separate sub-populations with different N content, in the red giant branch of each cluster. MUSE spectra of individual stars belonging to each population were combined, resulting in high signal-to-noise spectra representative of each population, which were compared to search for mean differences in Na. We find a mean abundance variation of $Delta$[Na/Fe]$=0.18pm0.04$ dex for NGC 416 and $Delta$[Na/Fe]$=0.24pm0.05$ dex for Lindsay 1. In both clusters we find that the population that is enhanced in N is also enhanced in Na, which is the same pattern to the one observed in ancient GCs. Furthermore, we detect a bimodal distribution of core-helium burning Red Clump (RC) giants in the UV colour magnitude diagram of NGC 416. A comparison of the stacked MUSE spectra of the two RCs shows the same mean Na abundance difference between the two populations. The results reported in this work are a crucial hint that star clusters of a large age range share the same origin: they are the same types of objects, but only separated in age.



rate research

Read More

Nearly all of the well studied ancient globular clusters (GCs), in the Milky Way and in nearby galaxies, show star-to-star variations in specific elements (e.g., He, C, N, O, Na, Al), known as multiple populations (MPs). However, MPs are not restricted to ancient clusters, with massive clusters down to $sim2$ Gyr showing signs of chemical variations. This suggests that young and old clusters share the same formation mechanism but most of the work to date on younger clusters has focused on N-variations. Initial studies even suggested that younger clusters may not host spreads in other elements beyond N (e.g., Na), calling into question whether these abundance variations share the same origin as in the older GCs. In this work, we combine HST photometry with VLT/MUSE spectroscopy of a large sample of RGB stars (338) in the Large Magellanic Cloud cluster NGC 1978, the youngest globular to date with reported MPs in the form of N-spreads. By combining the spectra of individual RGB stars into N-normal and N-enhanced samples, based on the chromosome map derived from HST, we search for mean abundance variations. Based on the NaD line, we find a Na-difference of $Delta$[Na/Fe]$=0.07pm0.01$ between the populations. While this difference is smaller than typically found in ancient GCs (which may suggest a correlation with age), this result further confirms that the MP phenomenon is the same, regardless of cluster age and host galaxy. As such, these young clusters offer some of the strictest tests for theories on the origin of MPs.
We present a photometric analysis of the star clusters Lindsay 1, Kron 3, NGC339, NGC416, Lindsay 38, and NGC419 in the Small Magellanic Cloud (SMC), observed with the Hubble Space Telescope Advanced Camera for Surveys (ACS) in the F555W and F814W filters. Our color magnitude diagrams (CMDs) extend ~3.5 mag deeper than the main-sequence turnoff points, deeper than any previous data. Cluster ages were derived using three different isochrone models: Padova, Teramo, and Dartmouth, which are all available in the ACS photometric system. Fitting observed ridgelines for each cluster, we provide a homogeneous and unique set of low-metallicity, single-age fiducial isochrones. The cluster CMDs are best approximated by the Dartmouth isochrones for all clusters, except for NGC419 where the Padova isochrones provided the best fit. The CMD of NGC419 shows several main-sequence turn-offs, which belong to the cluster and to the SMC field. We thus derive an age range of 1.2-1.6 Gyr for NGC419. Interestingly, our intermediate-age star clusters have a metallicity spread of ~0.6 dex, which demonstrates that the SMC does not have a smooth, monotonic age-metallicity relation. We find an indication for centrally concentrated blue straggler star candidates in NGC416, while for the other clusters these are not present. Using the red clump magnitudes, we find that the closest cluster, NGC419 (~50kpc), and the farthest cluster, Lindsay 38 (~67kpc), have a relative distance of ~17kpc, which confirms the large depth of the SMC.
Open clusters are historically regarded as single-aged stellar populations representative of star formation within the Galactic disk. Recent literature has questioned this view, based on discrepant Na abundances relative to the field, and concerns about the longevity of bound clusters contributing to a selection bias: perhaps long-lived open clusters are chemically different to the star formation events that contributed to the Galactic disk. We explore a large sample of high resolution Na, O, Ba & Eu abundances from the literature, homogenized as much as reasonable including accounting for NLTE effects, variations in analysis and choice of spectral lines. Compared to a template globular cluster and representative field stars, we find no significant abundance trends, confirming that the process producing the Na-O anti-correlation in globular clusters is not present in open clusters. Furthermore, previously reported Na-enhancement of open clusters is found to be an artefact of NLTE effects, with the open clusters matching a subset of chemically tagged field stars.
This is the second paper in our series about the search for multiple populations in Magellanic Cloud star clusters using the Hubble Space Telescope. Here we report the detection of multiple stellar populations in the colour-magnitude diagrams of the intermediate-age clusters Lindsay 1, NGC 416 and NGC 339. With ages between 6.0 and 7.5 Gyr, these clusters are the youngest ones in which chemical abundance spreads have been detected so far. This confirms that the appearance of multiple populations is not restricted to only ancient globular clusters, but may also be a common feature in clusters as young as 6 Gyr. Our results are in agreement with a recent spectroscopic study of Lindsay 1. We found that the fraction of enriched stars in NGC 416 is ~45% whereas it is ~25% in NGC 339 and ~36% in Lindsay 1. Similar to NGC 121, these fractions are lower than the average value for globular clusters in the Milky Way.
160 - Paul Goudfrooij 2015
Recent high-quality photometry of many star clusters in the Magellanic Clouds with ages of 1$,-,$2 Gyr revealed main sequence turnoffs (MSTOs) that are significantly wider than can be accounted for by a simple stellar population (SSP). Such extended MSTOs (eMSTOs) are often interpreted in terms of an age spread of several $10^8$ yr, challenging the traditional view of star clusters as being formed in a single star formation episode. Li et al. and Bastian & Niederhofer recently investigated the sub-giant branches (SGBs) of NGC 1651, NGC 1806, and NGC 1846, three star clusters in the Large Magellanic Cloud (LMC) that exhibit an eMSTO. They argued that the SGB of these star clusters can be explained only by a SSP. We study these and two other similar star clusters in the LMC, using extensive simulations of SSPs including unresolved binaries. We find that the shapes of the cross-SGB profiles of all star clusters in our sample are in fact consistent with their cross-MSTO profiles when the latter are interpreted as age distributions. Conversely, SGB morphologies of star clusters with eMSTOs are found to be inconsistent with those of simulated SSPs. Finally, we create PARSEC isochrones from tracks featuring a grid of convective overshoot levels and a very fine grid of stellar masses. A comparison of the observed photometry with these isochrones shows that the morphology of the red clump (RC) of such star clusters is also consistent with that implied by their MSTO in the age spread scenario. We conclude that the SGB and RC morphologies of star clusters featuring eMSTOs are consistent with the scenario in which the eMSTOs are caused by a distribution of stellar ages.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا