Do you want to publish a course? Click here

PP-OCR: A Practical Ultra Lightweight OCR System

193   0   0.0 ( 0 )
 Added by Ruoyu Guo
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The Optical Character Recognition (OCR) systems have been widely used in various of application scenarios, such as office automation (OA) systems, factory automations, online educations, map productions etc. However, OCR is still a challenging task due to the various of text appearances and the demand of computational efficiency. In this paper, we propose a practical ultra lightweight OCR system, i.e., PP-OCR. The overall model size of the PP-OCR is only 3.5M for recognizing 6622 Chinese characters and 2.8M for recognizing 63 alphanumeric symbols, respectively. We introduce a bag of strategies to either enhance the model ability or reduce the model size. The corresponding ablation experiments with the real data are also provided. Meanwhile, several pre-trained models for the Chinese and English recognition are released, including a text detector (97K images are used), a direction classifier (600K images are used) as well as a text recognizer (17.9M images are used). Besides, the proposed PP-OCR are also verified in several other language recognition tasks, including French, Korean, Japanese and German. All of the above mentioned models are open-sourced and the codes are available in the GitHub repository, i.e., https://github.com/PaddlePaddle/PaddleOCR.



rate research

Read More

223 - Yuning Du , Chenxia Li , Ruoyu Guo 2021
Optical Character Recognition (OCR) systems have been widely used in various of application scenarios. Designing an OCR system is still a challenging task. In previous work, we proposed a practical ultra lightweight OCR system (PP-OCR) to balance the accuracy against the efficiency. In order to improve the accuracy of PP-OCR and keep high efficiency, in this paper, we propose a more robust OCR system, i.e. PP-OCRv2. We introduce bag of tricks to train a better text detector and a better text recognizer, which include Collaborative Mutual Learning (CML), CopyPaste, Lightweight CPUNetwork (LCNet), Unified-Deep Mutual Learning (U-DML) and Enhanced CTCLoss. Experiments on real data show that the precision of PP-OCRv2 is 7% higher than PP-OCR under the same inference cost. It is also comparable to the server models of the PP-OCR which uses ResNet series as backbones. All of the above mentioned models are open-sourced and the code is available in the GitHub repository PaddleOCR which is powered by PaddlePaddle.
The focus of our paper is the identification and correction of non-word errors in OCR text. Such errors may be the result of incorrect insertion, deletion, or substitution of a character, or the transposition of two adjacent characters within a single word. Or, it can be the result of word boundary problems that lead to run-on errors and incorrect-split errors. The traditional N-gram correction methods can handle single-word errors effectively. However, they show limitations when dealing with split and merge errors. In this paper, we develop an unsupervised method that can handle both errors. The method we develop leads to a sizable improvement in the correction rates. This tutorial paper addresses very difficult word correction problems - namely incorrect run-on and split errors - and illustrates what needs to be considered when addressing such problems. We outline a possible approach and assess its success on a limited study.
Recent advances in OCR have shown that an end-to-end (E2E) training pipeline that includes both detection and recognition leads to the best results. However, many existing methods focus primarily on Latin-alphabet languages, often even only case-insensitive English characters. In this paper, we propose an E2E approach, Multiplexed Multilingual Mask TextSpotter, that performs script identification at the word level and handles different scripts with different recognition heads, all while maintaining a unified loss that simultaneously optimizes script identification and multiple recognition heads. Experiments show that our method outperforms the single-head model with similar number of parameters in end-to-end recognition tasks, and achieves state-of-the-art results on MLT17 and MLT19 joint text detection and script identification benchmarks. We believe that our work is a step towards the end-to-end trainable and scalable multilingual multi-purpose OCR system. Our code and model will be released.
In this paper, we propose an OCR (optical character recognition)-based localization system called OCRAPOSE II, which is applicable in a number of indoor scenarios including office buildings, parkings, airports, grocery stores, etc. In these scenarios, characters (i.e. texts or numbers) can be used as suitable distinctive landmarks for localization. The proposed system takes advantage of OCR to read these characters in the query still images and provides a rough location estimate using a floor plan. Then, it finds depth and angle-of-view of the query using the information provided by the OCR engine in order to refine the location estimate. We derive novel formulas for the query angle-of-view and depth estimation using image line segments and the OCR box information. We demonstrate the applicability and effectiveness of the proposed system through experiments in indoor scenarios. It is shown that our system demonstrates better performance compared to the state-of-the-art benchmarks in terms of location recognition rate and average localization error specially under sparse database condition.
We describe a novel line-level script identification method. Previous work repurposed an OCR model generating per-character script codes, counted to obtain line-level script identification. This has two shortcomings. First, as a sequence-to-sequence model it is more complex than necessary for the sequence-to-label problem of line script identification. This makes it harder to train and inefficient to run. Second, the counting heuristic may be suboptimal compared to a learned model. Therefore we reframe line script identification as a sequence-to-label problem and solve it using two components, trained end-toend: Encoder and Summarizer. The encoder converts a line image into a feature sequence. The summarizer aggregates the sequence to classify the line. We test various summarizers with identical inception-style convolutional networks as encoders. Experiments on scanned books and photos containing 232 languages in 30 scripts show 16% reduction of script identification error rate compared to the baseline. This improved script identification reduces the character error rate attributable to script misidentification by 33%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا