Do you want to publish a course? Click here

Newell-Littlewood numbers II: extended Horn inequalities

76   0   0.0 ( 0 )
 Added by Gidon Orelowitz
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The Newell-Littlewood numbers $N_{mu, u,lambda}$ are tensor product multiplicities of Weyl modules for classical Lie groups, in the stable limit. For which triples of partitions $(mu, u,lambda)$ does $N_{mu, u,lambda}>0$ hold? The Littlewood-Richardson coefficient case is solved by the Horn inequalities (in work of A. Klyachko and A. Knutson-T. Tao). We extend these celebrated linear inequalities to a much larger family, suggesting a general solution.



rate research

Read More

We provide two shifted analogues of the tableau switching process due to Benkart, Sottile, and Stroomer, the shifted tableau switching process and the modified shifted tableau switching process. They are performed by applying a sequence of specially contrived elementary transformations called {em switches} and turn out to have some spectacular properties. For instance, the maps induced from these algorithms are involutive and behave very nicely with respect to shifted Young tableaux whose reading words satisfy the lattice property. As an application, we give combinatorial interpretations of Schur $P$- and $Q$-function identities. We also demonstrate the relationship between the shifted tableau switching process and the shifted $J$-operation due to Worley.
Let G be a complex reductive group acting on a finite-dimensional complex vector space H. Let B be a Borel subgroup of G and let T be the associated torus. The Mumford cone is the polyhedral cone generated by the T-weights of the polynomial functions on H which are semi-invariant under the Borel subgroup. In this article, we determine the inequalities of the Mumford cone in the case of the linear representation associated to a quiver and a dimension vector n=(n_x). We give these inequalities in terms of filtered dimension vectors, and we directly adapt Schofields argument to inductively determine the dimension vectors of general subrepresentations in the filtered context. In particular, this gives one further proof of the Horn inequalities for tensor products.
145 - Pham H. Tiep , Van H. Vu 2015
In 1943, Littlewood and Offord proved the first anti-concentration result for sums of independent random variables. Their result has since then been strengthened and generalized by generations of researchers, with applications in several areas of mathematics. In this paper, we present the first non-abelian analogue of Littlewood-Offord result, a sharp anti-concentration inequality for products of independent random variables.
133 - Jean Dolbeault 2018
This paper is devoted to a new family of reverse Hardy-Littlewood-Sobolev inequalities which involve a power law kernel with positive exponent. We investigate the range of the admissible parameters and characterize the optimal functions. A striking open question is the possibility of concentration which is analyzed and related with nonlinear diffusion equations involving mean field drifts.
This work lies across three areas (in the title) of investigation that are by themselves of independent interest. A problem that arose in quantum computing led us to a link that tied these areas together. This link consists of a single formal power series with a multifaced interpretation. The deeper exploration of this link yielded results as well as methods for solving some numerical problems in each of these separate areas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا