Do you want to publish a course? Click here

Multiple solutions of Kazdan-Warner equation on graphs in the negative case

73   0   0.0 ( 0 )
 Added by Yunyan Yang
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Let $G=(V,E)$ be a finite connected graph, and let $kappa: Vrightarrow mathbb{R}$ be a function such that $int_Vkappa dmu<0$. We consider the following Kazdan-Warner equation on $G$:[Delta u+kappa-K_lambda e^{2u}=0,] where $K_lambda=K+lambda$ and $K: Vrightarrow mathbb{R}$ is a non-constant function satisfying $max_{xin V}K(x)=0$ and $lambdain mathbb{R}$. By a variational method, we prove that there exists a $lambda^*>0$ such that when $lambdain(-infty,lambda^*]$ the above equation has solutions, and has no solution when $lambdageq lambda^ast$. In particular, it has only one solution if $lambdaleq 0$; at least two distinct solutions if $0<lambda<lambda^*$; at least one solution if $lambda=lambda^ast$. This result complements earlier work of Grigoryan-Lin-Yang cite{GLY16}, and is viewed as a discrete analog of that of Ding-Liu cite{DL95} and Yang-Zhu cite{YZ19} on manifolds.

rate research

Read More

111 - Linlin Sun , Jingyong Zhu 2020
In this paper, we study the following Kazdan-Warner equation with sign-changing prescribed function $h$ begin{align*} -Delta u=8pileft(frac{he^{u}}{int_{Sigma}he^{u}}-1right) end{align*} on a closed Riemann surface whose area is equal to one. The solutions are the critical points of the functional $J_{8pi}$ which is defined by begin{align*} J_{8pi}(u)=frac{1}{16pi}int_{Sigma}| abla u|^2+int_{Sigma}u-lnleft|int_{Sigma}he^{u}right|,quad uin H^1left(Sigmaright). end{align*} We prove the existence of minimizer of $J_{8pi}$ by assuming begin{equation*} Delta ln h^++8pi-2K>0 end{equation*}at each maximum point of $2ln h^++A$, where $K$ is the Gaussian curvature, $h^+$ is the positive part of $h$ and $A$ is the regular part of the Green function. This generalizes the existence result of Ding, Jost, Li and Wang [Asian J. Math. 1(1997), 230-248] to the sign-changing prescribed function case. We are also interested in the blow-up behavior of a sequence $u_{varepsilon}$ of critical points of $J_{8pi-varepsilon}$ with $int_{Sigma}he^{u_{varepsilon}}=1, limlimits_{varepsilonsearrow 0}J_{8pi-varepsilon}left(u_{varepsilon}right)<infty$ and obtain the following identity during the blow-up process begin{equation*} -varepsilon=frac{16pi}{(8pi-varepsilon)h(p_varepsilon)}left[Delta ln h(p_varepsilon)+8pi-2K(p_varepsilon)right]lambda_{varepsilon}e^{-lambda_{varepsilon}}+Oleft(e^{-lambda_{varepsilon}}right), end{equation*}where $p_varepsilon$ and $lambda_varepsilon$ are the maximum point and maximum value of $u_varepsilon$, respectively. Moreover, $p_{varepsilon}$ converges to the blow-up point which is a critical point of the function $2ln h^{+}+A$.
86 - Linlin Sun , Jingyong Zhu 2020
We consider an evolution problem associated to the Kazdan-Warner equation on a closed Riemann surface $(Sigma,g)$ begin{align*} -Delta_{g}u=8pileft(frac{he^{u}}{int_{Sigma}he^{u}{rm d}mu_{g}}-frac{1}{int_{Sigma}{rm d}mu_{g}}right) end{align*} where the prescribed function $hgeq0$ and $max_{Sigma}h>0$. We prove the global existence and convergence under additional assumptions such as begin{align*} Delta_{g}ln h(p_0)+8pi-2K(p_0)>0 end{align*} for any maximum point $p_0$ of the sum of $2ln h$ and the regular part of the Green function, where $K$ is the Gaussian curvature of $Sigma$. In particular, this gives a new proof of the existence result by Yang and Zhu [Proc. Amer. Math. Soc. 145 (2017), no. 9, 3953-3959] which generalizes existence result of Ding, Jost, Li and Wang [Asian J. Math. 1 (1997), no. 2, 230-248] to the non-negative prescribed function case.
This paper discusses some regularity of almost periodic solutions of the Poissons equation $-Delta u = f$ in $mathbb{R}^n$, where $f$ is an almost periodic function. It has been proved by Sibuya [Almost periodic solutions of Poissons equation. Proc. Amer. Math. Soc., 28:195--198, 1971.] that if $u$ is a bounded continuous function and solves the Poissons equation in the distribution sense, then $u$ is an almost periodic function. In this work, we relax the assumption of the usual boundedness into boundedness in the sense of distribution which we refer to as a bounded generalized function. The set of bounded generalized functions are wider than the set of usual bounded functions. Then, upon assuming that $u$ is a bounded generalized function and solves the Poissons equation in the distribution sense, we prove that this solution is bounded in the usual sense, continuous and almost periodic. Moreover, we show that the first partial derivatives of the solution $partial u/ partial x_i$, $i=1, ldots, n$, are also continuous, bounded, and almost periodic functions. The technique is based on extending a representation formula using Greens function for Poissons equation for solutions in the distribution sense. Some useful properties of distributions are also shown that can be used to study other elliptic problems.
173 - Linlin Sun , Liuquan Wang 2021
We study Kazdan-Warner equations on a connected finite graph via the method of the degree theory. Firstly, we prove that all solutions to the Kazdan-Warner equation with nonzero prescribed function are uniformly bounded and the Brouwer degree is well defined. Secondly, we compute the Brouwer degree case by case. As consequences, we give new proofs of some known existence results for the Kazdan-Warner equation on a connected finite graph.
We investigate the stationary diffusion equation with a coefficient given by a (transformed) Levy random field. Levy random fields are constructed by smoothing Levy noise fields with kernels from the Matern class. We show that Levy noise naturally extends Gaussian white noise within Minlos theory of generalized random fields. Results on the distributional path spaces of Levy noise are derived as well as the amount of smoothing to ensure such distributions become continuous paths. Given this, we derive results on the pathwise existence and measurability of solutions to the random boundary value problem (BVP). For the solutions of the BVP we prove existence of moments (in the $H^1$-norm) under adequate growth conditions on the Levy measure of the noise field. Finally, a kernel expansion of the smoothed Levy noise fields is introduced and convergence in $L^n$ ($ngeq 1$) of the solutions associated with the approximate random coefficients is proven with an explicit rate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا