Do you want to publish a course? Click here

Measurement of Gravitational Coupling between Millimeter-Sized Masses

370   0   0.0 ( 0 )
 Added by Hans Hepach
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate gravitational coupling between two gold spheres of approximately 1mm radius and 90mg mass. By periodically modulating the source mass position at a frequency f=12.7mHz we generate a time-dependent gravitational acceleration at the location of the test mass, which is measured off resonance in a miniature torsional balance configuration. Over an integration time of 350 hours the test mass oscillator enables measurements with a systematic accuracy of 4E-11m/s^2 and a statistical precision of 4E-12m/s^2. This is sufficient to resolve the gravitational signal at a minimal surface distance of 400mum between the two masses. We observe both linear and quadratic coupling, consistent in signal strength with a time-varying 1/r gravitational potential. Contributions of non-gravitational forces could be kept to less than 10% of the observed signal. We expect further improvements to enable the isolation of gravity as a coupling force for objects well below the Planck mass. This opens the way for precision tests of gravity in a new regime of isolated microscopic source masses.



rate research

Read More

Current terrestrial gravitational-wave detectors operate at frequencies above 10 Hz. There is strong astrophysical motivation to construct low-frequency gravitational-wave detectors capable of observing 10 mHz - 10Hz signals. While space-based detectors provide one means of achieving this end, one may also consider terretrial detectors. However, there are numerous technological challenges. In particular, it is difficult to isolate test masses so that they are both seismically isolated and freely falling under the influence of gravity at millihertz frequencies. We investigate the challenges of low-frequency suspension in a hypothetical terrestrial detector. As a case study, we consider a Magnetically Assisted Gravitational-wave Pendulum Intorsion (MAGPI) suspension design. We construct a noise budget to estimate some of the required specifications. In doing so, we identify what are likely to be a number of generic limiting noise sources for terrestrial millihertz gravitational-wave suspension systems (as well as some peculiar to the MAGPI design). We highlight significant experimental challenges in order to argue that the development of millihertz suspensions will be a daunting task. Any system that relies on magnets faces even greater challenges. Entirely mechanical designs such as Zollner pendulums may provide the best path forward.
115 - T.Akutsu , M.Ando , S.Araki 2017
Major construction and initial-phase operation of a second-generation gravitational-wave detector KAGRA has been completed. The entire 3-km detector is installed underground in a mine in order to be isolated from background seismic vibrations on the surface. This allows us to achieve a good sensitivity at low frequencies and high stability of the detector. Bare-bones equipment for the interferometer operation has been installed and the first test run was accomplished in March and April of 2016 with a rather simple configuration. The initial configuration of KAGRA is named {it iKAGRA}. In this paper, we summarize the construction of KAGRA, including the study of the advantages and challenges of building an underground detector and the operation of the iKAGRA interferometer together with the geophysics interferometer that has been constructed in the same tunnel.
KAGRA is a 3-km interferometric gravitational wave telescope located in the Kamioka mine in Japan. It is the first km-class gravitational wave telescope constructed underground to reduce seismic noise, and the first km-class telescope to use cryogenic cooling of test masses to reduce thermal noise. The construction of the infrastructure to house the interferometer in the tunnel, and the initial phase operation of the interferometer with a simple 3-km Michelson configuration have been completed. The first cryogenic operation is expected in 2018, and the observing runs with a full interferometer are expected in 2020s. The basic interferometer configuration and the current status of KAGRA are described.
The recent discovery of merging black holes suggests that a stochastic gravitational-wave background is within reach of the advanced detector network operating at design sensitivity. However, correlated magnetic noise from Schumann resonances threatens to contaminate observation of a stochastic background. In this paper, we report on the first effort to eliminate intercontinental correlated noise from Schumann resonances using Wiener filtering. Using magnetometers as proxies for gravitational-wave detectors, we demonstrate as much as a factor of two reduction in the coherence between magnetometers on different continents. While much work remains to be done, our results constitute a proof-of-principle and motivate follow-up studies with a dedicated array of magnetometers.
KAGRA is a new gravitational wave detector which aims to begin joint observation with Advanced LIGO and Advanced Virgo from late 2019. Here, we present KAGRAs possible upgrade plans to improve the sensitivity in the decade ahead. Unlike other state-of-the-art detectors, KAGRA requires different investigations for the upgrade since it is the only detector which employs cryogenic cooling of the test mass mirrors. In this paper, investigations on the upgrade plans which can be realized by changing the input laser power, increasing the mirror mass, and injecting frequency dependent squeezed vacuum are presented. We show how each upgrade affects to the detector frequency bands and also discuss impacts on gravitational-wave science. We then propose an effective progression of upgrades based on technical feasibility and scientific scenarios.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا