Do you want to publish a course? Click here

A no-go theorem for the persistent reality of Wigners friends perception

282   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The notorious Wigners friend thought experiment (and modifications thereof) has in recent years received renewed interest especially due to new arguments that force us to question some of the fundamental assumptions of quantum theory. In this paper, we formulate a no-go theorem for the persistent reality of Wigners friends perception, which allows us to conclude that the perceptions that the friend has of her own measurement outcomes at different times cannot share the same reality, if seemingly natural quantum mechanical assumptions are met. More formally, this means that, in a Wigners friend scenario, there is no joint probability distribution for the friends perceived measurement outcomes at two different times, that depends linearly on the initial state of the measured system and whose marginals reproduce the predictions of unitary quantum theory. This theorem entails that one must either (1) propose a nonlinear modification of the Born rule for two-time predictions, (2) sometimes prohibit the use of present information to predict the future -- thereby reducing the predictive power of quantum theory -- or (3) deny that unitary quantum mechanics makes valid single-time predictions for all observers. We briefly discuss which of the theorems assumptions are more likely to be dropped within various popular interpretations of quantum mechanics.



rate research

Read More

155 - N.D. Hari Dass 2002
A general framework for studying compactifications in supergravity and string theories was introduced by Candelas, Horowitz, Strominger and Witten. This was further generalised to take into account the warp factor by de Wit, Smit and Hari Dass. Though the prime focus of the latter was to find solutions with nontrivial warp factors (shown not to exist under a variety of circumstances), it was shown there that de Sitter compactifications are generically disfavoured. In this note we place these results in the context of a revived interest in de Sitter spacetimes .
We introduce fully SGUTs, SUSY grand unified theories that, upon symmetry breaking through the Higgs mechanism, decompose into a visible sector and an extra sector where the dynamics of the extra sector gauge group is responsible for SUSY breaking. Fully SGUTs thus have the important feature that all gauge groups of the visible sector and the extra sector unify into a simple gauge group at the SGUT scale, therefore generalizing the successful MSSM gauge coupling unification to all the gauge couplings of the theory. By focusing on the ISS SUSY-breaking mechanism in the extra sector, we show that it is impossible to reproduce the MSSM matter content when there exists a metastable ISS SUSY-breaking state.
One-way quantum computing achieves the full power of quantum computation by performing single particle measurements on some many-body entangled state, known as the resource state. As single particle measurements are relatively easy to implement, the preparation of the resource state becomes a crucial task. An appealing approach is simply to cool a strongly correlated quantum many-body system to its ground state. In addition to requiring the ground state of the system to be universal for one-way quantum computing, we also want the Hamiltonian to have non-degenerate ground state protected by a fixed energy gap, to involve only two-body interactions, and to be frustration-free so that measurements in the course of the computation leave the remaining particles in the ground space. Recently, significant efforts have been made to the search of resource states that appear naturally as ground states in spin lattice systems. The approach is proved to be successful in spin-5/2 and spin-3/2 systems. Yet, it remains an open question whether there could be such a natural resource state in a spin-1/2, i.e., qubit system. Here, we give a negative answer to this question by proving that it is impossible for a genuinely entangled qubit states to be a non-degenerate ground state of any two-body frustration-free Hamiltonian. What is more, we prove that every spin-1/2 frustration-free Hamiltonian with two-body interaction always has a ground state that is a product of single- or two-qubit states, a stronger result that is interesting independent of the context of one-way quantum computing.
128 - Xi Chen , Ze Wu , Min Jiang 2021
Superradiant phase transition (SPT) in thermal equilibrium, as a fundamental concept bridging the statistical physics and electrodynamics, can offer the key resources for quantum information science. Notwithstanding its fundamental and practical significances, equilibrium SPT has never been observed in experiments since the first proposal in the 1970s. Furthermore, the existence of equilibrium SPT in the cavity quantum electrodynamics (QED) systems is still subject of ongoing debates, due to the no-go theorem induced by the so-called A2 term. Based on the platform of nuclear magnetic resonance (NMR), here we experimentally demonstrate the occurrence of equilibrium SPT beyond no-go theorem by introducing the antisqueezing effect. The mechanism relies on the antisqueezing that recovers the singularity of the ground state via exponentially enhancing the zero point fluctuation (ZPF) of system. The strong entanglement and squeezed Schrodinger cat states of spins are achieved experimentally in the superradiant phase, which may play an important role in fundamental tests of quantum theory, implementing quantum metrology and high-efficient quantum information processing. Our experiment also shows the antisqueezing-enhanced signal-to-noise rate (SNR) of NMR spectrum, providing a general method for implementing high-precision NMR experiments.
The CP asymmetry in $tauto K_Spi u_tau$, as measured by the BaBar collaboration, differs from the Standard Model prediction by $2.8sigma$. Most non-standard interactions do not allow for the required strong phase needed to produce a non-vanishing CP asymmetry, leaving only new tensor interactions as a possible mechanism. We demonstrate that, contrary to previous assumptions in the literature, the crucial interference between vector and tensor phases is suppressed by at least two orders of magnitude due to Watsons final-state-interaction theorem. Furthermore, we find that the strength of the relevant CP-violating tensor interaction is strongly constrained by bounds from the neutron electric dipole moment and $D$-$bar{D}$ mixing. These observations together imply that it is extremely difficult to explain the current $tauto K_Spi u_tau$ measurement in terms of physics beyond the Standard Model originating in the ultraviolet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا