Do you want to publish a course? Click here

A Preliminary Determination of the Second Mellin Moment of the Pions Distribution Amplitude Using the Heavy Quark Operator Product Expansion

86   0   0.0 ( 0 )
 Added by Robert J. Perry
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We explore the feasibility of determining Mellin moments of the pions light cone distribution amplitude using the heavy quark operator product expansion (HOPE) method. As the first step of a proof of principle study we pursue a determination of the second Mellin moment. We discuss our choice of kinematics which allows us to successfully extract the moment at low pion momentum. We describe the numerical simulation, and describe the data analysis, which leads us to a preliminary determination of the second Mellin moment in the continuum limit in the quenched approximation as $langlexi^2rangle=0.19(7)$ in the $bar{text{MS}}$ scheme at 2 GeV.



rate research

Read More

We present preliminary results for the second moment of the pions distribution amplitude. The lattice formulation and the phenomenological implications are briefly reviewed, with special emphasis on some subtleties that arise when the Lorentz group is replaced by the hypercubic group. Having analysed more than half of the available configurations, the result obtained is xi^2_L = 0.06 pm 0.02.
Using the second moment of the pion distribution amplitude as an example, we investigate whether lattice calculations of matrix elements of local operators involving covariant derivatives may benefit from the recently proposed momentum smearing technique for hadronic interpolators. Comparing the momentum smearing technique to the traditional Wuppertal smearing we find - at equal computational cost - a considerable reduction of the statistical errors. The present investigation was carried out using $N_f=2+1$ dynamical non-perturbatively order $a$ improved Wilson fermions on lattices of different volumes and pion masses down to 220 MeV.
We present the results of a lattice study of the second moment of the light-cone pion distribution amplitude using two flavors of dynamical (clover) fermions on lattices of different volumes and pion masses down to $m_pisim 150 , mathrm {MeV}$. At lattice spacings between $0.06 , mathrm {fm}$ and $0.08 , mathrm {fm}$ we find for the second Gegenbauer moment the value $a_2 = 0.1364(154)(145)$ at the scale $mu=2 , mathrm {GeV}$ in the $overline{mathrm{MS}}$ scheme, where the first error is statistical including the uncertainty of the chiral extrapolation, and the second error is the estimated uncertainty coming from the nonperturbatively determined renormalization factors.
We have reported elsewhere in this conference on our continuing project to determine non-perturbative Wilson coefficients on the lattice, as a step towards a completely non-perturbative determination of the nucleon structure. In this talk we discuss how these Wilson coefficients can be used to extract Nachtmann moments of structure functions, using the case of off-shell Landau-gauge quarks as a first simple example. This work is done using overlap fermions, because their improved chiral properties reduce the difficulties due to operator mixing.
Nucleon structure functions can be observed in Deep Inelastic Scattering experiments, but it is an outstanding challenge to confront them with fully non-perturbative QCD results. For this purpose we investigate the product of electromagnetic currents (with large photon momenta) between quark states (of low momenta). By means of an Operator Product Expansion the structure function can be decomposed into matrix elements of local operators, and Wilson coefficients. For consistency both have to be computed non-perturbatively. Here we present precision results for a set of Wilson coefficients. They are evaluated from propagators for numerous quark momenta on the lattice, where the use of chiral fermions suppresses undesired operator mixing. This over-determines the Wilson coefficients, but reliable results can be extracted by means of a Singular Value Decomposition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا