Do you want to publish a course? Click here

Making Images Undiscoverable from Co-Saliency Detection

57   0   0.0 ( 0 )
 Added by Ruijun Gao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Co-salient object detection (CoSOD) has recently achieved significant progress and played a key role in retrieval-related tasks. However, it inevitably poses an entirely new safety and security issue, i.e., highly personal and sensitive content can potentially be extracting by powerful CoSOD methods. In this paper, we address this problem from the perspective of adversarial attacks and identify a novel task: adversarial co-saliency attack. Specially, given an image selected from a group of images containing some common and salient objects, we aim to generate an adversarial version that can mislead CoSOD methods to predict incorrect co-salient regions. Note that, compared with general white-box adversarial attacks for classification, this new task faces two additional challenges: (1) low success rate due to the diverse appearance of images in the group; (2) low transferability across CoSOD methods due to the considerable difference between CoSOD pipelines. To address these challenges, we propose the very first black-box joint adversarial exposure and noise attack (Jadena), where we jointly and locally tune the exposure and additive perturbations of the image according to a newly designed high-feature-level contrast-sensitive loss function. Our method, without any information on the state-of-the-art CoSOD methods, leads to significant performance degradation on various co-saliency detection datasets and makes the co-salient objects undetectable. This can have strong practical benefits in properly securing the large number of personal photos currently shared on the internet.



rate research

Read More

We unveil a long-standing problem in the prevailing co-saliency detection systems: there is indeed inconsistency between training and testing. Constructing a high-quality co-saliency detection dataset involves time-consuming and labor-intensive pixel-level labeling, which has forced most recent works to rely instead on semantic segmentation or saliency detection datasets for training. However, the lack of proper co-saliency and the absence of multiple foreground objects in these datasets can lead to spurious variations and inherent biases learned by models. To tackle this, we introduce the idea of counterfactual training through context adjustment and propose a cost-free group-cut-paste (GCP) procedure to leverage off-the-shelf images and synthesize new samples. Following GCP, we collect a novel dataset called Context Adjustment Training (CAT). CAT consists of 33,500 images, which is four times larger than the current co-saliency detection datasets. All samples are automatically annotated with high-quality mask annotations, object categories, and edge maps. Extensive experiments on recent benchmarks are conducted, show that CAT can improve various state-of-the-art models by a large margin (5% ~ 25%). We hope that the scale, diversity, and quality of our dataset can benefit researchers in this area and beyond. Our dataset will be publicly accessible through our project page.
Early detection of lung cancer is essential in reducing mortality. Recent studies have demonstrated the clinical utility of low-dose computed tomography (CT) to detect lung cancer among individuals selected based on very limited clinical information. However, this strategy yields high false positive rates, which can lead to unnecessary and potentially harmful procedures. To address such challenges, we established a pipeline that co-learns from detailed clinical demographics and 3D CT images. Toward this end, we leveraged data from the Consortium for Molecular and Cellular Characterization of Screen-Detected Lesions (MCL), which focuses on early detection of lung cancer. A 3D attention-based deep convolutional neural net (DCNN) is proposed to identify lung cancer from the chest CT scan without prior anatomical location of the suspicious nodule. To improve upon the non-invasive discrimination between benign and malignant, we applied a random forest classifier to a dataset integrating clinical information to imaging data. The results show that the AUC obtained from clinical demographics alone was 0.635 while the attention network alone reached an accuracy of 0.687. In contrast when applying our proposed pipeline integrating clinical and imaging variables, we reached an AUC of 0.787 on the testing dataset. The proposed network both efficiently captures anatomical information for classification and also generates attention maps that explain the features that drive performance.
Object proposals greatly benefit object detection task in recent state-of-the-art works. However, the existing object proposals usually have low localization accuracy at high intersection over union threshold. To address it, we apply saliency detection to each bounding box to improve their quality in this paper. We first present a geodesic saliency detection method in contour, which is designed to find closed contours. Then, we apply it to each candidate box with multi-sizes, and refined boxes can be easily produced in the obtained saliency maps which are further used to calculate saliency scores for proposal ranking. Experiments on PASCAL VOC 2007 test dataset demonstrate the proposed refinement approach can greatly improve existing models.
143 - Tao Zhou , Huazhu Fu , Geng Chen 2021
RGB-D saliency detection has attracted increasing attention, due to its effectiveness and the fact that depth cues can now be conveniently captured. Existing works often focus on learning a shared representation through various fusion strategies, with few methods explicitly considering how to preserve modality-specific characteristics. In this paper, taking a new perspective, we propose a specificity-preserving network (SP-Net) for RGB-D saliency detection, which benefits saliency detection performance by exploring both the shared information and modality-specific properties (e.g., specificity). Specifically, two modality-specific networks and a shared learning network are adopted to generate individual and shared saliency maps. A cross-enhanced integration module (CIM) is proposed to fuse cross-modal features in the shared learning network, which are then propagated to the next layer for integrating cross-level information. Besides, we propose a multi-modal feature aggregation (MFA) module to integrate the modality-specific features from each individual decoder into the shared decoder, which can provide rich complementary multi-modal information to boost the saliency detection performance. Further, a skip connection is used to combine hierarchical features between the encoder and decoder layers. Experiments on six benchmark datasets demonstrate that our SP-Net outperforms other state-of-the-art methods. Code is available at: https://github.com/taozh2017/SPNet.
We propose the first stochastic framework to employ uncertainty for RGB-D saliency detection by learning from the data labeling process. Existing RGB-D saliency detection models treat this task as a point estimation problem by predicting a single saliency map following a deterministic learning pipeline. We argue that, however, the deterministic solution is relatively ill-posed. Inspired by the saliency data labeling process, we propose a generative architecture to achieve probabilistic RGB-D saliency detection which utilizes a latent variable to model the labeling variations. Our framework includes two main models: 1) a generator model, which maps the input image and latent variable to stochastic saliency prediction, and 2) an inference model, which gradually updates the latent variable by sampling it from the true or approximate posterior distribution. The generator model is an encoder-decoder saliency network. To infer the latent variable, we introduce two different solutions: i) a Conditional Variational Auto-encoder with an extra encoder to approximate the posterior distribution of the latent variable; and ii) an Alternating Back-Propagation technique, which directly samples the latent variable from the true posterior distribution. Qualitative and quantitative results on six challenging RGB-D benchmark datasets show our approachs superior performance in learning the distribution of saliency maps. The source code is publicly available via our project page: https://github.com/JingZhang617/UCNet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا