Do you want to publish a course? Click here

Recognizing Micro-Expression in Video Clip with Adaptive Key-Frame Mining

107   0   0.0 ( 0 )
 Added by Chongyang Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

As a spontaneous expression of emotion on face, micro-expression reveals the underlying emotion that cannot be controlled by human. In micro-expression, facial movement is transient and sparsely localized through time. However, the existing representation based on various deep learning techniques learned from a full video clip is usually redundant. In addition, methods utilizing the single apex frame of each video clip require expert annotations and sacrifice the temporal dynamics. To simultaneously localize and recognize such fleeting facial movements, we propose a novel end-to-end deep learning architecture, referred to as adaptive key-frame mining network (AKMNet). Operating on the video clip of micro-expression, AKMNet is able to learn discriminative spatio-temporal representation by combining spatial features of self-learned local key frames and their global-temporal dynamics. Theoretical analysis and empirical evaluation show that the proposed approach improved recognition accuracy in comparison with state-of-the-art methods on multiple benchmark datasets.

rate research

Read More

Action Unit (AU) detection plays an important role for facial expression recognition. To the best of our knowledge, there is little research about AU analysis for micro-expressions. In this paper, we focus on AU detection in micro-expressions. Microexpression AU detection is challenging due to the small quantity of micro-expression databases, low intensity, short duration of facial muscle change, and class imbalance. In order to alleviate the problems, we propose a novel Spatio-Temporal Adaptive Pooling (STAP) network for AU detection in micro-expressions. Firstly, STAP is aggregated by a series of convolutional filters of different sizes. In this way, STAP can obtain multi-scale information on spatial and temporal domains. On the other hand, STAP contains less parameters, thus it has less computational cost and is suitable for micro-expression AU detection on very small databases. Furthermore, STAP module is designed to pool discriminative information for micro-expression AUs on spatial and temporal domains.Finally, Focal loss is employed to prevent the vast number of negatives from overwhelming the microexpression AU detector. In experiments, we firstly polish the AU annotations on three commonly used databases. We conduct intensive experiments on three micro-expression databases, and provide several baseline results on micro-expression AU detection. The results show that our proposed approach outperforms the basic Inflated inception-v1 (I3D) in terms of an average of F1- score. We also evaluate the performance of our proposed method on cross-database protocol. It demonstrates that our proposed approach is feasible for cross-database micro-expression AU detection. Importantly, the results on three micro-expression databases and cross-database protocol provide extensive baseline results for future research on micro-expression AU detection.
Video frame interpolation, the synthesis of novel views in time, is an increasingly popular research direction with many new papers further advancing the state of the art. But as each new method comes with a host of variables that affect the interpolation quality, it can be hard to tell what is actually important for this task. In this work, we show, somewhat surprisingly, that it is possible to achieve near state-of-the-art results with an older, simpler approach, namely adaptive separable convolutions, by a subtle set of low level improvements. In doing so, we propose a number of intuitive but effective techniques to improve the frame interpolation quality, which also have the potential to other related applications of adaptive convolutions such as burst image denoising, joint image filtering, or video prediction.
Recognizing Video events in long, complex videos with multiple sub-activities has received persistent attention recently. This task is more challenging than traditional action recognition with short, relatively homogeneous video clips. In this paper, we investigate the problem of recognizing long and complex events with varying action rhythms, which has not been considered in the literature but is a practical challenge. Our work is inspired in part by how humans identify events with varying rhythms: quickly catching frames contributing most to a specific event. We propose a two-stage emph{end-to-end} framework, in which the first stage selects the most significant frames while the second stage recognizes the event using the selected frames. Our model needs only emph{event-level labels} in the training stage, and thus is more practical when the sub-activity labels are missing or difficult to obtain. The results of extensive experiments show that our model can achieve significant improvement in event recognition from long videos while maintaining high accuracy even if the test videos suffer from severe rhythm changes. This demonstrates the potential of our method for real-world video-based applications, where test and training videos can differ drastically in rhythms of sub-activities.
A generic video summary is an abridged version of a video that conveys the whole story and features the most important scenes. Yet the importance of scenes in a video is often subjective, and users should have the option of customizing the summary by using natural language to specify what is important to them. Further, existing models for fully automatic generic summarization have not exploited available language models, which can serve as an effective prior for saliency. This work introduces CLIP-It, a single framework for addressing both generic and query-focused video summarization, typically approached separately in the literature. We propose a language-guided multimodal transformer that learns to score frames in a video based on their importance relative to one another and their correlation with a user-defined query (for query-focused summarization) or an automatically generated dense video caption (for generic video summarization). Our model can be extended to the unsupervised setting by training without ground-truth supervision. We outperform baselines and prior work by a significant margin on both standard video summarization datasets (TVSum and SumMe) and a query-focused video summarization dataset (QFVS). Particularly, we achieve large improvements in the transfer setting, attesting to our methods strong generalization capabilities.
Micro-expression, for its high objectivity in emotion detection, has emerged to be a promising modality in affective computing. Recently, deep learning methods have been successfully introduced into the micro-expression recognition area. Whilst the higher recognition accuracy achieved, substantial challenges in micro-expression recognition remain. The existence of micro expression in small-local areas on face and limited size of available databases still constrain the recognition accuracy on such emotional facial behavior. In this work, to tackle such challenges, we propose a novel attention mechanism called micro-attention cooperating with residual network. Micro-attention enables the network to learn to focus on facial areas of interest covering different action units. Moreover, coping with small datasets, the micro-attention is designed without adding noticeable parameters while a simple yet efficient transfer learning approach is together utilized to alleviate the overfitting risk. With extensive experimental evaluations on three benchmarks (CASMEII, SAMM and SMIC) and post-hoc feature visualizations, we demonstrate the effectiveness of the proposed micro-attention and push the boundary of automatic recognition of micro-expression.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا