No Arabic abstract
Dedicated HI surveys have recently led to a growing category of low-mass galaxies found in the Local Volume. We present synthesis imaging of one such galaxy, Pisces A, a low-mass dwarf originally confirmed via optical imaging and spectroscopy of neutral hydrogen (HI) sources in the Galactic Arecibo L-band Feed Array HI (GALFA-HI) survey. Using HI observations taken with the Karl G. Jansky Very Large Array (JVLA), we characterize the kinematic structure of the gas and connect it to the galaxys environment and evolutionary history. While the galaxy shows overall ordered rotation, a number of kinematic features indicate a disturbed gas morphology. These features are suggestive of a tumultuous recent history, and represent $sim 3.5$% of the total baryonic mass. We find a total baryon fraction $f_{rm bary} = 0.13$ if we include these features. We also quantify the cosmic environment of Pisces A, finding an apparent alignment of the disturbed gas with nearby, large scale filamentary structure at the edge of the Local Void. We consider several scenarios for the origin of the disturbed gas, including gas stripping via ram pressure or galaxy-galaxy interactions, as well as accretion and ram pressure compression. Though we cannot rule out a past interaction with a companion, our observations best support the suggestion that the neutral gas morphology and recent star formation in Pisces A is a direct result of its interactions with the IGM.
The `Local Volume HI Survey (LVHIS) comprises deep HI spectral line and 20-cm radio continuum observations of 82 nearby, gas-rich galaxies, supplemented by multi-wavelength images. Our sample consists of all galaxies with Local Group velocities v_LG < 550 km/s or distances D < 10 Mpc that are detected in the HI Parkes All Sky Survey (HIPASS). Using full synthesis observations in at least three configurations of the Australia Telescope Compact Array (ATCA), we obtain detailed HI maps for a complete sample of gas-rich galaxies with Dec < -30 deg. Here we present a comprehensive LVHIS Galaxy Atlas, including the overall gas distribution, mean velocity field, velocity dispersion, and position-velocity diagrams, together with a homogeneous set of measured and derived galaxy properties. Our primary goal is to investigate the HI morphologies, kinematics, and environment at high resolution and sensitivity. LVHIS galaxies represent a wide range of morphologies and sizes; our measured HI masses range from ~10^7 to 10^10 Msun, based on independent distance estimates. The LVHIS Galaxy Atlas (including FITS files) is available on-line.
Context. Pisces A & Pisces B are the only two galaxies found via optical imaging and spectroscopy out of 22 HI clouds identified in the GALFAHI survey as dwarf galaxy candidates. Aims. Derive the HI content and kinematics of Pisces A & B. Methods. Aperture synthesis HI observations using the seven dish Karoo Array Telescope (KAT-7), which is a pathfinder instrument for MeerKAT, the South African precursor to the mid-frequency Square Kilometre Array (SKA-MID). Results. The small rotation velocities detected of ~5 km/sec and ~10 km/sec in Pisces A & B respectively, and their HI content show that they are really dwarf irregular galaxies (dIrr). Despite that small rotation component, it is more the random motions ~9-11 km/sec that provide most of the gravitational support, especially in the outer parts. The study of their kinematics, especially the strong gradients of random motions, suggest that those two dwarf galaxies are not yet in equilibrium. Conclusions. These HI rich galaxies may be indicative of a large population of dwarfs at the limit of detectability. However, such gas-rich dwarf galaxies will most likely never be within the virial radius of MW-type galaxies and become sub-halo candidates. Systems such as Pisces A & B are more likely to be found at a few Mpc.s from MW-type galaxies.
In this paper, we introduce the Local Volume TiNy Titans sample (LV-TNT), which is a part of a larger body of work on interacting dwarf galaxies: TNT (Stierwalt et al. 2015). This LV-TNT sample consists of 10 dwarf galaxy pairs in the Local Universe (< 30 Mpc from Milky Way), which span mass ratios of M_(*,1)/M_(*,2) < 20, projected separations < 100 kpc, and pair member masses of log(M_*/M_Sun) < 9.9. All 10 LV-TNT pairs have resolved synthesis maps of their neutral hydrogen, are located in a range of environments and captured at various interaction stages. This enables us to do a comparative study of the diffuse gas in dwarf-dwarf interactions and disentangle the gas lost due to interactions with halos of massive galaxies, from the gas lost due to mutual interaction between the dwarfs. We find that the neutral gas is extended in the interacting pairs when compared to non-paired analogs, indicating that gas is tidally pre-processed. Additionally, we find that the environment can shape the HI distributions in the form of trailing tails and that the gas is not unbound and lost to the surroundings unless the dwarf pair is residing near a massive galaxy. We conclude that a nearby, massive host galaxy is what ultimately prevents the gas from being reaccreted. Dwarf-dwarf interactions thus represent an important part of the baryon cycle of low mass galaxies, enabling the parking of gas at large distances to serve as a continual gas supply channel until accretion by a more massive host.
In this paper we measure the far-infrared (FIR) and radio flux densities of a sample of 82 local gas-rich galaxies, including 70 dwarf galaxies ($M_* < 10^9 M_odot$), from the Local Volume HI Survey (LVHIS), which is close to volume limited. It is found that LVHIS galaxies hold a tight linear FIR-radio correlation (FRC) over four orders of magnitude ($F_{1.4GHz} propto F_{FIR}^{1.00pm0.08}$). However, for detected galaxies only, a trend of larger FIR-to-radio ratio with decreasing flux density is observed. We estimate the star formation rate by combining UV and mid-IR data using empirical calibration. It is confirmed that both FIR and radio emission are strongly connected with star formation but with significant non-linearity. Dwarf galaxies are found radiation deficient in both bands, when normalized by star formation rate. It urges a conspiracy to keep the FIR-to-radio ratio generally constant for dwarf galaxies. By using partial correlation coefficient in Pearson definition, we identify the key galaxy properties associated with the FIR and radio deficiency. Some major factors, such as stellar mass surface density, will cancel out when taking the ratio between FIR and radio fluxes. The remaining factors, such as HI-to-stellar mass ratio and galaxy size, are expected to cancel each other due to the distribution of galaxies in the parameter space. Such cancellation is probably responsible for the conspiracy to keep the FRC alive.
An unresolved question in galaxy evolution is whether the star formation histories of low mass systems are preferentially dominated by starbursts or modes that are more quiescent and continuous. Here, we quantify the prevalence of global starbursts in dwarf galaxies at the present epoch, and infer their characteristic durations and amplitudes. The analysis is based on the H-alpha component of the 11 Mpc H-alpha UV Galaxy Survey (11HUGS), which is providing H-alpha and GALEX UV imaging for an approximately volume-limited sample of ~300 star-forming galaxies within 11 Mpc. We first examine the completeness properties of the sample, and then directly tally the number of bursting dwarfs and compute the fraction of star formation that is concentrated in such systems. Our results are consistent with a picture where dwarfs that are currently experiencing massive global bursts are just the ~6% tip of a low-mass galaxy iceberg. Moreover, bursts are only responsible for about a quarter of the total star formation in the overall dwarf population, so the majority of stars in low-mass systems are not formed in this mode today. Spirals and irregulars devoid of H-alpha emission are rare, indicating that the complete cessation of star formation generally does not occur in such galaxies and is not characteristic of the inter-burst state, at least for the more luminous systems with M(B)<-15. The starburst statistics presented here directly constrain the duty cycle and the average burst amplitude under the simplest assumptions where all dwarf irregulars share a common star formation history and undergo similar bursts cycles with equal probability. Uncertainties in such assumptions are discussed in the context of previous work.