Do you want to publish a course? Click here

Production of very light elements in kilonovae

72   0   0.0 ( 0 )
 Added by Albino Perego Dr
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the production of light elements (Z<20) in the ejecta of binary neutron star mergers by combining detailed nucleosynthesis calculations with the outcome of numerical relativity merger simulations. We explore different microphysical equations of state and binary mass ratios, and find that hydrogen and helium are the most abundant light elements. For both elements, the decay of free neutrons is the driving nuclear reaction. Hydrogen is produced in extremely fast expanding ejecta while helium is synthesized in association with heavy r-process elements. By computing synthetic spectra, we find that the possibility of detecting hydrogen and helium features in kilonova spectra is very unlikely.



rate research

Read More

80 - Brian D. Metzger 2019
The coalescence of double neutron star (NS-NS) and black hole (BH)-NS binaries are prime sources of gravitational waves (GW) for Advanced LIGO/Virgo and future ground-based detectors. Neutron-rich matter released from such events undergo rapid neutron capture (r-process) nucleosynthesis as it decompresses into space, enriching our universe with rare heavy elements like gold and platinum. Radioactive decay of these unstable nuclei powers a rapidly evolving, approximately isotropic thermal transient known as a ``kilonova, which probes the physical conditions during the merger and its aftermath. Here I review the history and physics of kilonovae, leading to the current paradigm of day-timescale emission at optical wavelengths from lanthanide-free components of the ejecta, followed by week-long emission with a spectral peak in the near-infrared (NIR). These theoretical predictions, as compiled in the original version of this review, were largely confirmed by the transient optical/NIR counterpart discovered to the first NS-NS merger, GW170817, discovered by LIGO/Virgo. Using a simple light curve model to illustrate the essential physical processes and their application to GW170817, I then introduce important variations about the standard picture which may be observable in future mergers. These include ~hours-long UV precursor emission, powered by the decay of free neutrons in the outermost ejecta layers or shock-heating of the ejecta by a delayed ultra-relativistic outflow; and enhancement of the luminosity from a long-lived central engine, such as an accreting BH or millisecond magnetar. Joint GW and kilonova observations of GW170817 and future events provide a new avenue to constrain the astrophysical origin of the r-process elements and the equation of state of dense nuclear matter.
Multi-messenger astronomy received a great boost following the discovery of kilonova AT2017gfo, the optical counterpart of the gravitational wave source GW170817 associated with the short gamma-ray burst GRB 170817A. AT2017gfo was the first kilonova that could be extensively monitored in time both photometrically and spectroscopically. Previously, only few candidates have been observed against the glare of short GRB afterglows. In this work, we aim to search the fingerprints of AT2017gfo-like kilonova emissions in the optical/NIR light curves of 39 short GRBs with known redshift. For the first time, our results allow us to study separately the range of luminosity of the blue and red components of AT2017gfo-like kilonovae in short GRBs. In particular, the red component is similar in luminosity to AT2017gfo, while the blue kilonova can be more than 10 times brighter. Finally, we find further evidence to support all the claimed kilonova detections and we exclude an AT2017gfo-like kilonova in GRBs 050509B and 061201.
79 - Oleg Korobkin 2020
The detailed observations of GW170817 proved for the first time directly that neutron star mergers are a major production site of heavy elements. The observations could be fit by a number of simulations that qualitatively agree, but can quantitatively differ (e.g. in total r-process mass) by an order of magnitude. We categorize kilonova ejecta into several typical morphologies motivated by numerical simulations, and apply a radiative transfer Monte Carlo code to study how the geometric distribution of the ejecta shapes the emitted radiation. We find major impacts on both spectra and light curves. The peak bolometric luminosity can vary by two orders of magnitude and the timing of its peak by a factor of five. These findings provide the crucial implication that the ejecta masses inferred from observations around the peak brightness are uncertain by at least an order of magnitude. Mixed two-component models with lanthanide-rich ejecta are particularly sensitive to geometric distribution. A subset of mixed models shows very strong viewing angle dependence due to lanthanide curtaining, which persists even if the relative mass of lanthanide-rich component is small. The angular dependence is weak in the rest of our models, but different geometric combinations of the two components lead to a highly diverse set of light curves. We identify geometry-dependent {P Cygni} features in late spectra that directly map out strong lines in the simulated opacity of neodymium, which can help to constrain the ejecta geometry and to directly probe the r-process abundances.
Due to their production sites, as well as to how they are processed and destroyed in stars, the light elements are excellent tools to investigate a number of crucial issues in modern astrophysics: from stellar structure and non-standard processes in stellar interiors to age dating of stars; from pre-main sequence evolution to the star formation histories of young clusters and associations and to multiple populations in globular clusters; from Big Bang nucleosynthesis to the formation and chemical enrichment history of the Milky Way Galaxy, just to cite some relevant examples. In this paper, we focus on lithium, beryllium, and boron and on carbon, nitrogen, and oxygen. LiBeB are rare elements, with negligible abundances with respect to hydrogen; on the contrary, CNO are among the most abundant elements in the Universe. Pioneering observations of light-element surface abundances in stars started almost 70 years ago and huge progress has been achieved since then. Indeed, for different reasons, precise measurements of LiBeB and CNO are difficult, even in our Sun; however, the advent of state-of-the-art ground- and space-based instrumentation has allowed the determination of high-quality abundances in stars of different type, belonging to different Galactic populations. Noticeably, the recent large spectroscopic surveys performed with multifiber spectrographs have yielded detailed and homogeneous information on the abundances of Li and CNO for statistically significant samples of stars; this has allowed us to obtain new results and insights and, at the same time, raise new questions and challenges. A complete understanding of the light-element patterns and evolution in the Universe has not been still achieved. Perspectives for further progress will open up soon thanks to the new generation instrumentation that is under development and will come online in the coming years.
In this review, we first reassess the supernova remnant paradigm for the origin of galactic cosmic rays in the light of recent cosmic-ray data acquired by the Voyager 1 spacecraft. We then describe the theory of light element nucleosynthesis by nuclear interaction of cosmic rays with the interstellar medium and outline the problem of explaining the measured Be abundances in old halo stars of low metallicity with the standard model for the galactic cosmic ray origin. We then discuss the various cosmic ray models proposed in the literature to account for the measured evolution of the light elements in the Milky Way, and point out the difficulties that they all encounter. Amongst all possibilities, it seems to us that the superbubble model provides the most satisfactory explanation for these observations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا