Do you want to publish a course? Click here

DVE: Dynamic Variational Embeddings with Applications in Recommender Systems

151   0   0.0 ( 0 )
 Added by Meimei Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Embedding is a useful technique to project a high-dimensional feature into a low-dimensional space, and it has many successful applications including link prediction, node classification and natural language processing. Current approaches mainly focus on static data, which usually lead to unsatisfactory performance in applications involving large changes over time. How to dynamically characterize the variation of the embedded features is still largely unexplored. In this paper, we introduce a dynamic variational embedding (DVE) approach for sequence-aware data based on recent advances in recurrent neural networks. DVE can model the nodes intrinsic nature and temporal variation explicitly and simultaneously, which are crucial for exploration. We further apply DVE to sequence-aware recommender systems, and develop an end-to-end neural architecture for link prediction.



rate research

Read More

In modern recommender systems, both users and items are associated with rich side information, which can help understand users and items. Such information is typically heterogeneous and can be roughly categorized into flat and hierarchical side information. While side information has been proved to be valuable, the majority of existing systems have exploited either only flat side information or only hierarchical side information due to the challenges brought by the heterogeneity. In this paper, we investigate the problem of exploiting heterogeneous side information for recommendations. Specifically, we propose a novel framework jointly captures flat and hierarchical side information with mathematical coherence. We demonstrate the effectiveness of the proposed framework via extensive experiments on various real-world datasets. Empirical results show that our approach is able to lead a significant performance gain over the state-of-the-art methods.
Modern recommender systems (RS) work by processing a number of signals that can be inferred from large sets of user-item interaction data. The main signal to analyze stems from the raw matrix that represents interactions. However, we can increase the performance of RS by considering other kinds of signals like the context of interactions, which could be, for example, the time or date of the interaction, the user location, or sequential data corresponding to the historical interactions of the user with the system. These complex, context-based interaction signals are characterized by a rich relational structure that can be represented by a multi-partite graph. Graph Convolutional Networks (GCNs) have been used successfully in collaborative filtering with simple user-item interaction data. In this work, we generalize the use of GCNs for N-partite graphs by considering N multiple context dimensions and propose a simple way for their seamless integration in modern deep learning RS architectures. More specifically, we define a graph convolutional embedding layer for N-partite graphs that processes user-item-context interactions, and constructs node embeddings by leveraging their relational structure. Experiments on several datasets from recommender systems to drug re-purposing show the benefits of the introduced GCN embedding layer by measuring the performance of different context-enriched tasks.
In this work, we consider how preference models in interactive recommendation systems determine the availability of content and users opportunities for discovery. We propose an evaluation procedure based on stochastic reachability to quantify the maximum probability of recommending a target piece of content to an user for a set of allowable strategic modifications. This framework allows us to compute an upper bound on the likelihood of recommendation with minimal assumptions about user behavior. Stochastic reachability can be used to detect biases in the availability of content and diagnose limitations in the opportunities for discovery granted to users. We show that this metric can be computed efficiently as a convex program for a variety of practical settings, and further argue that reachability is not inherently at odds with accuracy. We demonstrate evaluations of recommendation algorithms trained on large datasets of explicit and implicit ratings. Our results illustrate how preference models, selection rules, and user interventions impact reachability and how these effects can be distributed unevenly.
Hybrid recommendations have recently attracted a lot of attention where user features are utilized as auxiliary information to address the sparsity problem caused by insufficient user-item interactions. However, extracted user features generally contain rich multimodal information, and most of them are irrelevant to the recommendation purpose. Therefore, excessive reliance on these features will make the model overfit on noise and difficult to generalize. In this article, we propose a variational bandwidth auto-encoder (VBAE) for recommendations, aiming to address the sparsity and noise problems simultaneously. VBAE first encodes user collaborative and feature information into Gaussian latent variables via deep neural networks to capture non-linear user similarities. Moreover, by considering the fusion of collaborative and feature variables as a virtual communication channel from an information-theoretic perspective, we introduce a user-dependent channel to dynamically control the information allowed to be accessed from the feature embeddings. A quantum-inspired uncertainty measurement of the hidden rating embeddings is proposed accordingly to infer the channel bandwidth by disentangling the uncertainty information in the ratings from the semantic information. Through this mechanism, VBAE incorporates adequate auxiliary information from user features if collaborative information is insufficient, while avoiding excessive reliance on noisy user features to improve its generalization ability to new users. Extensive experiments conducted on three real-world datasets demonstrate the effectiveness of the proposed method. Codes and datasets are released at https://github.com/yaochenzhu/vbae.
148 - Yishi Xu , Yingxue Zhang , Wei Guo 2020
Given the convenience of collecting information through online services, recommender systems now consume large scale data and play a more important role in improving user experience. With the recent emergence of Graph Neural Networks (GNNs), GNN-based recommender models have shown the advantage of modeling the recommender system as a user-item bipartite graph to learn representations of users and items. However, such models are expensive to train and difficult to perform frequent updates to provide the most up-to-date recommendations. In this work, we propose to update GNN-based recommender models incrementally so that the computation time can be greatly reduced and models can be updated more frequently. We develop a Graph Structure Aware Incremental Learning framework, GraphSAIL, to address the commonly experienced catastrophic forgetting problem that occurs when training a model in an incremental fashion. Our approach preserves a users long-term preference (or an items long-term property) during incremental model updating. GraphSAIL implements a graph structure preservation strategy which explicitly preserves each nodes local structure, global structure, and self-information, respectively. We argue that our incremental training framework is the first attempt tailored for GNN based recommender systems and demonstrate its improvement compared to other incremental learning techniques on two public datasets. We further verify the effectiveness of our framework on a large-scale industrial dataset.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا