Do you want to publish a course? Click here

Major Scientific Challenges and Opportunities in Understanding Magnetic Reconnection and Related Explosive Phenomena in Solar and Heliospheric Plasmas

327   0   0.0 ( 0 )
 Added by Hantao Ji
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic reconnection underlies many explosive phenomena in the heliosphere and in laboratory plasmas. The new research capabilities in theory/simulations, observations, and laboratory experiments provide the opportunity to solve the grand scientific challenges summarized in this whitepaper. Success will require enhanced and sustained investments from relevant funding agencies, increased interagency/international partnerships, and close collaborations of the solar, heliospheric, and laboratory plasma communities. These investments will deliver transformative progress in understanding magnetic reconnection and related explosive phenomena including space weather events.



rate research

Read More

325 - H. Ji , A. Alt , S. Antiochos 2020
This white paper summarizes major scientific challenges and opportunities in understanding magnetic reconnection and related explosive phenomena as a fundamental plasma process.
Solar and heliospheric cosmic rays provide a unique perspective in cosmic ray research: we can observe not only the particles, but also the properties of the plasmas in which the they are accelerated and propagate, using in situ and high-resolution remote sensing instruments. The heliospheric cosmic ray observations typically require space missions, which face stern competition against planetary and astrophysics missions, and it can take up to decades from the initial concept proposal until the actual observing of the cosmic rays can commence. Therefore it is important to have continuity in the cosmic ray mission timeline. In this overview, we review the current status and the future outlook in the experimental solar and heliospheric research. We find that the current status of the available cosmic ray observations is good, but that many of the spacecraft are near the end of their feasible mission life. We describe the three missions currently being prepared for launch, and discuss the future outlook of the solar and heliospheric cosmic ray missions.
The orientation and stability of the reconnection x-line in asymmetric geometry is studied using three-dimensional (3D) particle-in-cell simulations. We initiate reconnection at the center of a large simulation domain to minimize the boundary effect. The resulting x-line has sufficient freedom to develop along an optimal orientation, and it remains laminar. Companion 2D simulations indicate that this x-line orientation maximizes the reconnection rate. The divergence of the non-gyrotropic pressure tensor breaks the frozen-in condition, consistent with its 2D counterpart. We then design 3D simulations with one dimension being short to fix the x-line orientation, but long enough to allow the growth of the fastest growing oblique tearing modes. This numerical experiment suggests that reconnection tends to radiate secondary oblique tearing modes if it is externally (globally) forced to proceed along an orientation not favored by the local physics. The development of oblique structure easily leads to turbulence inside small periodic systems.
A statistical relationship between magnetic reconnection, current sheets and intermittent turbulence in the solar wind is reported for the first time using in-situ measurements from the Wind spacecraft at 1 AU. We identify intermittency as non-Gaussian fluctuations in increments of the magnetic field vector, $mathbf{B}$, that are spatially and temporally non-uniform. The reconnection events and current sheets are found to be concentrated in intervals of intermittent turbulence, identified using the partial variance of increments method: within the most non-Gaussian 1% of fluctuations in $mathbf{B}$, we find 87%-92% of reconnection exhausts and $sim$9% of current sheets. Also, the likelihood that an identified current sheet will also correspond to a reconnection exhaust increases dramatically as the least intermittent fluctuations are removed from the dataset. Hence, the turbulent solar wind contains a hierarchy of intermittent magnetic field structures that are increasingly linked to current sheets, which in turn are progressively more likely to correspond to sites of magnetic reconnection. These results could have far reaching implications for laboratory and astrophysical plasmas where turbulence and magnetic reconnection are ubiquitous.
Magnetic reconnection (MR) and the associated concurrently occurring waves have been extensively studied at large-scale plasma boundaries, in quasi-symmetric and asymmetric configurations in the terrestrial magnetotail and at the magnetopause. Recent high-resolution observations by MMS (Magnetospheric Multiscale) spacecraft indicate that MR can occur also in the magnetosheath where the conditions are highly turbulent when the upstream shock geometry is quasi-parallel. The strong turbulent motions make the boundary conditions for evolving MR complicated. In this paper it is demonstrated that the wave observations in localized regions of MR can serve as an additional diagnostic tool reinforcing our capacity for identifying MR events in turbulent plasmas. It is shown that in a close resemblance with MR at large-scale boundaries, turbulent reconnection associated whistler waves occur at separatrix/outflow regions and at the outer boundary of the electron diffusion region, while lower hybrid drift waves are associated with density gradients during the crossing of the current sheet. The lower hybrid drift instability can make the density inhomogeneities rippled. The identification of MR associated waves in the magnetosheath represents also an important milestone for developing a better understanding of energy redistribution and dissipation in turbulent plasmas.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا