Do you want to publish a course? Click here

Slow scrambling in extremal BTZ and microstate geometries

58   0   0.0 ( 0 )
 Added by K\\'evin Nguyen
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Out-of-time-order correlators (OTOCs) that capture maximally chaotic properties of a black hole are determined by scattering processes near the horizon. This prompts the question to what extent OTOCs display chaotic behaviour in horizonless microstate geometries. This question is complicated by the fact that Lyapunov growth of OTOCs requires nonzero temperature, whereas constructions of microstate geometries have been mostly restricted to extremal black holes. In this paper, we compute OTOCs for a class of extremal black holes, namely maximally rotating BTZ black holes, and show that on average they display slow scrambling, characterized by cubic (rather than exponential) growth. Superposed on this average power-law growth is a sawtooth pattern, whose steep parts correspond to brief periods of Lyapunov growth associated to the nonzero temperature of the right-moving degrees of freedom in a dual conformal field theory. Next we study the extent to which these OTOCs are modified in certain superstrata, horizonless microstate geometries corresponding to these black holes. Rather than an infinite throat ending on a horizon, these geometries have a very deep but finite throat ending in a cap. We find that the superstrata display the same slow scrambling as maximally rotating BTZ black holes, except that for large enough time intervals the growth of the OTOC is cut off by effects related to the cap region, some of which we evaluate explicitly.



rate research

Read More

We reproduce the asymptotic expansion of the D1D5 microstate geometries by computing the emission amplitudes of closed string states from disks with mixed D1D5 boundary conditions. Thus we provide a direct link between the supergravity and D-brane descriptions of the D1D5 microstates at non-zero string coupling. Microscopically, the profile functions characterizing the microstate solutions are encoded in the choice of a condensate for the twisted open string states connecting D1 and D5 branes.
We construct a family of non-supersymmetric extremal black holes and their horizonless microstate geometries in four dimensions. The black holes can have finite angular momentum and an arbitrary charge-to-mass ratio, unlike their supersymmetric cousins. These features make them and their microstate geometries astrophysically relevant. Thus, they provide interesting prototypes to study deviations from Kerr solutions caused by new horizon-scale physics. In this paper, we compute the gravitational multipole structure of these solutions and compare them to Kerr black holes. The multipoles of the black hole differ significantly from Kerr as they depend non-trivially on the charge-to-mass ratio. The horizonless microstate geometries have the same multipoles as their corresponding black hole, with small deviations set by the scale of their microstructure.
99 - G. Menezes , J. Marino 2017
We study from the perspective of quantum information scrambling an acoustic black hole modelled by two semi-infinite, stationary, one dimensional condensates, connected by a spatial step-like discontinuity, and flowing respectively at subsonic and supersonic velocities. We develop a simple analytical treatment based on Bogolyubov theory of quantum fluctuations which is sufficient to derive analogue Hawking emission, and we compute out-of-time order correlations (OTOCs) of the Bose density field. We find that sonic black holes are slow scramblers contrary to their astrophysical counterparts: this manifests in a power law growth $propto t^2$ of OTOCs in contrast to the exponential increase in time expected for fast scramblers.
185 - B. Harms , A. Stern 2017
We show that the nonlinear $sigma-$model in an asymptotically $AdS_3$ space-time admits a novel local symmetry. The field action is assumed to be quartic in the nonlinear $sigma-$model fields and minimally coupled to gravity. The local symmetry transformation simultaneously twists the nonlinear $sigma-$model fields and changes the space-time metric, and it can be used to map an extremal $BTZ$ black hole to infinitely many hairy black hole solutions.
81 - J. Marino , A. M. Rey 2018
We study information scrambling, as diagnosed by the out-of-time order correlations (OTOCs), in a system of large spins collectively interacting via spatially inhomogeneous and incommensurate exchange couplings. The model is realisable in a cavity QED system in the dispersive regime. Fast scrambling, signalled by an exponential growth of the OTOCs, is observed when the couplings do not factorise into the product of a pair of local interaction terms, and at the same time the state of the spins points initially coplanar to the equator of the Bloch sphere. When one of these conditions is not realised, OTOCs grow algebraically with an exponent sensitive to the orientation of the spins in the initial state. The impact of initial conditions on the scrambling dynamics is attributed to the presence of a global conserved quantity, which critically slows down the evolution for initial states close to the poles of the Bloch sphere.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا