Do you want to publish a course? Click here

Large Norms of CNN Layers Do Not Hurt Adversarial Robustness

124   0   0.0 ( 0 )
 Added by Youwei Liang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Since the Lipschitz properties of convolutional neural networks (CNNs) are widely considered to be related to adversarial robustness, we theoretically characterize the $ell_1$ norm and $ell_infty$ norm of 2D multi-channel convolutional layers and provide efficient methods to compute the exact $ell_1$ norm and $ell_infty$ norm. Based on our theorem, we propose a novel regularization method termed norm decay, which can effectively reduce the norms of convolutional layers and fully-connected layers. Experiments show that norm-regularization methods, including norm decay, weight decay, and singular value clipping, can improve generalization of CNNs. However, they can slightly hurt adversarial robustness. Observing this unexpected phenomenon, we compute the norms of layers in the CNNs trained with three different adversarial training frameworks and surprisingly find that adversarially robust CNNs have comparable or even larger layer norms than their non-adversarially robust counterparts. Furthermore, we prove that under a mild assumption, adversarially robust classifiers can be achieved using neural networks, and an adversarially robust neural network can have an arbitrarily large Lipschitz constant. For this reason, enforcing small norms on CNN layers may be neither necessary nor effective in achieving adversarial robustness. The code is available at https://github.com/youweiliang/norm_robustness.

rate research

Read More

Deep networks are well-known to be fragile to adversarial attacks. We conduct an empirical analysis of deep representations under the state-of-the-art attack method called PGD, and find that the attack causes the internal representation to shift closer to the false class. Motivated by this observation, we propose to regularize the representation space under attack with metric learning to produce more robust classifiers. By carefully sampling examples for metric learning, our learned representation not only increases robustness, but also detects previously unseen adversarial samples. Quantitative experiments show improvement of robustness accuracy by up to 4% and detection efficiency by up to 6% according to Area Under Curve score over prior work. The code of our work is available at https://github.com/columbia/Metric_Learning_Adversarial_Robustness.
We focus on the use of proxy distributions, i.e., approximations of the underlying distribution of the training dataset, in both understanding and improving the adversarial robustness in image classification. While additional training data helps in adversarial training, curating a very large number of real-world images is challenging. In contrast, proxy distributions enable us to sample a potentially unlimited number of images and improve adversarial robustness using these samples. We first ask the question: when does adversarial robustness benefit from incorporating additional samples from the proxy distribution in the training stage? We prove that the difference between the robustness of a classifier on the proxy and original training dataset distribution is upper bounded by the conditional Wasserstein distance between them. Our result confirms the intuition that samples from a proxy distribution that closely approximates training dataset distribution should be able to boost adversarial robustness. Motivated by this finding, we leverage samples from state-of-the-art generative models, which can closely approximate training data distribution, to improve robustness. In particular, we improve robust accuracy by up to 6.1% and 5.7% in $l_{infty}$ and $l_2$ threat model, and certified robust accuracy by 6.7% over baselines not using proxy distributions on the CIFAR-10 dataset. Since we can sample an unlimited number of images from a proxy distribution, it also allows us to investigate the effect of an increasing number of training samples on adversarial robustness. Here we provide the first large scale empirical investigation of accuracy vs robustness trade-off and sample complexity of adversarial training by training deep neural networks on 2K to 10M images.
Adversarial training (AT) based on minimax optimization is a popular learning style that enhances the models adversarial robustness. Noisy labels (NL) commonly undermine the learning and hurt the models performance. Interestingly, both research directions hardly crossover and hit sparks. In this paper, we raise an intriguing question -- Does NL always hurt AT? Firstly, we find that NL injection in inner maximization for generating adversarial data augments natural data implicitly, which benefits ATs generalization. Secondly, we find NL injection in outer minimization for the learning serves as regularization that alleviates robust overfitting, which benefits ATs robustness. To enhance ATs adversarial robustness, we propose NoiLIn that gradually increases underline{Noi}sy underline{L}abels underline{In}jection over the ATs training process. Empirically, NoiLIn answers the previous question negatively -- the adversarial robustness can be indeed enhanced by NL injection. Philosophically, we provide a new perspective of the learning with NL: NL should not always be deemed detrimental, and even in the absence of NL in the training set, we may consider injecting it deliberately.
Despite their unmatched performance, deep neural networks remain susceptible to targeted attacks by nearly imperceptible levels of adversarial noise. While the underlying cause of this sensitivity is not well understood, theoretical analyses can be simplified by reframing each layer of a feed-forward network as an approximate solution to a sparse coding problem. Iterative solutions using basis pursuit are theoretically more stable and have improved adversarial robustness. However, cascading layer-wise pursuit implementations suffer from error accumulation in deeper networks. In contrast, our new method of deep pursuit approximates the activations of all layers as a single global optimization problem, allowing us to consider deeper, real-world architectures with skip connections such as residual networks. Experimentally, our approach demonstrates improved robustness to adversarial noise.
Deep learning models are prone to being fooled by imperceptible perturbations known as adversarial attacks. In this work, we study how equipping models with Test-time Transformation Ensembling (TTE) can work as a reliable defense against such attacks. While transforming the input data, both at train and test times, is known to enhance model performance, its effects on adversarial robustness have not been studied. Here, we present a comprehensive empirical study of the impact of TTE, in the form of widely-used image transforms, on adversarial robustness. We show that TTE consistently improves model robustness against a variety of powerful attacks without any need for re-training, and that this improvement comes at virtually no trade-off with accuracy on clean samples. Finally, we show that the benefits of TTE transfer even to the certified robustness domain, in which TTE provides sizable and consistent improvements.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا