No Arabic abstract
The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project has the primary goal of detecting and characterizing low-frequency gravitational waves through high-precision pulsar timing. The mitigation of interstellar effects is crucial to achieve the necessary precision for gravitational wave detection. Effects like dispersion and scattering are more influential at lower observing frequencies, with the variation of these quantities over week-month timescales requiring high-cadence multi-frequency observations for pulsar timing projects. In this work, we utilize the dual-frequency observing capability of the Giant Metrewave Radio Telescope (GMRT) and evaluate the potential decrease in dispersion measure (DM) uncertainties when combined with existing pulsar timing array data. We present the timing analysis for four millisecond pulsars observed with the GMRT simultaneously at 322 and 607 MHz, and compare the DM measurements with those obtained through NANOGrav observations with the Green Bank Telescope (GBT) and Arecibo Observatory at 1400 to 2300 MHz frequencies. Measured DM values with the GMRT and NANOGrav program show significant offsets for some pulsars, which could be caused by pulse profile evolution in the two frequency bands. In comparison to the predicted DM uncertainties when incorporating these low-frequency data into the NANOGrav dataset, we find that higher-precision GMRT data is necessary to provide improved DM measurements. Through the detection and analysis of pulse profile baseline ripple in data on test pulsar B1929+10, we find that, while not important for this data, it may be relevant for other timing datasets. We discuss the possible advantages and challenges of incorporating GMRT data into NANOGrav and International Pulsar Timing Array datasets.
We present low-frequency observations with the Giant Metrewave Radio Telescope (GMRT) of a sample of giant radio sources (GRSs), and high-frequency observations of three of these sources with the Very Large Array (VLA). From multifrequency observations of the lobes we estimate the magnetic field strengths using three different approaches, and show that these differ at most by a factor of $sim$3. For these large radio sources the inverse-Compton losses usually dominate over synchrotron losses when estimates of the classical minimum energy magnetic field are used, consistent with earlier studies. However, this is often not true if the magnetic fields are close to the values estimated using the formalism of Beck & Krause. We also examine the spectral indices of the cores and any evidence of recurrent activity in these sources. We probe the environment using the symmetry parameters of these sources and suggest that their environments are often asymmetric on scales of $sim$1 Mpc, consistent with earlier studies.
With 30 antennas and a maximum baseline length of 25 km, the Giant Metrewave Radio Telescope (GMRT) is the premier low-frequency radio interferometer today. We have carried out a study of possible expansions of the GMRT, via adding new antennas and installing focal plane arrays (FPAs), to improve its point-source sensitivity, surface brightness sensitivity, angular resolution, field of view, and U-V coverage. We have carried out array configuration studies, aimed at minimizing the number of new GMRT antennas required to obtain a well-behaved synthesized beam over a wide range of angular resolutions for full-synthesis observations. This was done via two approaches, tomographic projection and random sampling, to identify the optimal locations for the new antennas. We report results for the optimal locations of the antennas of an expanded array (the EGMRT), consisting of the existing 30 GMRT antennas, 30 new antennas at short distances, $leq 2.5$ km from the array centre, and 26 new antennas at long distances, $approx 5-25$ km from the array centre. The collecting area and the field of view of the proposed EGMRT array would be larger by factors of, respectively, $approx 3$ and $approx 30$, than those of the GMRT. Indeed, the EGMRT continuum sensitivity and survey speed with 550-850 MHz FPAs installed on the 45 antennas within a distance of $approx 2.5$ km of the array centre would be far better than those of any existing interferometer, and comparable to the sensitivity and survey speed of Phase-1 of the Square Kilometre Array.
We present results from a study of seven large known head-tail radio galaxies based on observations using the Giant Metrewave Radio Telescope at 240 and 610 MHz. These observations are used to study the radio morphologies and distribution of the spectral indices across the sources. The overall morphology of the radio tails of these sources is suggestive of random motions of the optical host around the cluster potential. The presence of the multiple bends an d wiggles in several head-tail sources is possibly due to the precessing radio jets. We find steepening of the spectral index along the radio tails. The prevailing equipartition magnetic field also decreases a long the radio tails of these sources. These steepening trends are attributed to the synchrotron aging of plasma toward the ends of the tails. The dynamical ages of these sample sources have been estimated to be ~100 Myr, which is a factor of six more than the age estimates from the radiative losses due to synchrotron cooling.
We present new Giant Metrewave Radio Telescope observations at 235 MHz and 610 MHz of 18 X-ray bright galaxy groups. These observations are part of an extended project, presented here and in future papers, which combines low-frequency radio and X-ray data to investigate the interaction between central active galactic nuclei (AGN) and the intra-group medium (IGM). The radio images show a very diverse population of group-central radio sources, varying widely in size, power, morphology and spectral index. Comparison of the radio images with Chandra and XMM-Newton X-ray images shows that groups with significant substructure in the X-ray band and marginal radio emission at >= 1 GHz host low-frequency radio structures that correlate with substructures in IGM. Radio-filled X-ray cavities, the most evident form of AGN/IGM interaction in our sample, are found in half of the systems, and are typically associated with small, low- or mid-power double radio sources. Two systems, NGC5044 and NGC4636, possess multiple cavities, which are isotropically distributed around the group center, possibly due to group weather. In other systems the radio/X-ray correlations are less evident. However, the AGN/IGM interaction can manifest itself through the effects of the high-pressure medium on the morphology, spectral properties and evolution of the radio-emitting plasma. In particular, the IGM can confine fading radio lobes in old/dying radio galaxies and prevent them from dissipating quickly. Evidence for radio emission produced by former outbursts that coexist with current activity is found in six groups of the sample.
The short gamma-ray burst (GRB) 170817A was the first GRB associated with a gravitational-wave event. Due to the exceptionally low luminosity of the prompt $gamma$-ray and the afterglow emission, the origin of both radiation components is highly debated. The most discussed models for the burst and the afterglow include a regular GRB jet seen off-axis and the emission from the cocoon encompassing a choked jet. Here, we report low radio-frequency observations at 610 and 1390~MHz obtained with the Giant Metrewave Radio Telescope (GMRT). Our observations span a range of $sim7$ to $sim152$ days after the burst. The afterglow started to emerge at these low frequencies about 60~days after the burst. The $1390$~MHz light curve barely evolved between 60 and 150 days, but its evolution is also marginally consistent with a $F_ upropto t^{0.8}$ rise seen in higher frequencies. We model the radio data and archival X-ray, optical and high-frequency radio data with models of top-hat and Gaussian structured GRB jets. We performed a Markov Chain Monte Carlo analysis of the structured-jet parameter space. Though highly degenerate, useful bounds on the posterior probability distributions can be obtained. Our bounds of the viewing angle are consistent with that inferred from the gravitational wave signal. We estimate the energy budget in prompt emission to be an order of magnitude lower than that in the afterglow blast-wave.