Do you want to publish a course? Click here

Face Mask Detection using Transfer Learning of InceptionV3

277   0   0.0 ( 0 )
 Added by Narinder Punn
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The world is facing a huge health crisis due to the rapid transmission of coronavirus (COVID-19). Several guidelines were issued by the World Health Organization (WHO) for protection against the spread of coronavirus. According to WHO, the most effective preventive measure against COVID-19 is wearing a mask in public places and crowded areas. It is very difficult to monitor people manually in these areas. In this paper, a transfer learning model is proposed to automate the process of identifying the people who are not wearing mask. The proposed model is built by fine-tuning the pre-trained state-of-the-art deep learning model, InceptionV3. The proposed model is trained and tested on the Simulated Masked Face Dataset (SMFD). Image augmentation technique is adopted to address the limited availability of data for better training and testing of the model. The model outperformed the other recently proposed approaches by achieving an accuracy of 99.9% during training and 100% during testing.



rate research

Read More

Coronavirus Disease 2019 (COVID-19) has spread all over the world since it broke out massively in December 2019, which has caused a large loss to the whole world. Both the confirmed cases and death cases have reached a relatively frightening number. Syndrome coronaviruses 2 (SARS-CoV-2), the cause of COVID-19, can be transmitted by small respiratory droplets. To curb its spread at the source, wearing masks is a convenient and effective measure. In most cases, people use face masks in a high-frequent but short-time way. Aimed at solving the problem that we dont know which service stage of the mask belongs to, we propose a detection system based on the mobile phone. We first extract four features from the GLCMs of the face masks micro-photos. Next, a three-result detection system is accomplished by using KNN algorithm. The results of validation experiments show that our system can reach a precision of 82.87% (standard deviation=8.5%) on the testing dataset. In future work, we plan to expand the detection objects to more mask types. This work demonstrates that the proposed mobile microscope system can be used as an assistant for face mask being used, which may play a positive role in fighting against COVID-19.
Face presentation attack detection (PAD) is essential to secure face recognition systems primarily from high-fidelity mask attacks. Most existing 3D mask PAD benchmarks suffer from several drawbacks: 1) a limited number of mask identities, types of sensors, and a total number of videos; 2) low-fidelity quality of facial masks. Basic deep models and remote photoplethysmography (rPPG) methods achieved acceptable performance on these benchmarks but still far from the needs of practical scenarios. To bridge the gap to real-world applications, we introduce a largescale High-Fidelity Mask dataset, namely CASIA-SURF HiFiMask (briefly HiFiMask). Specifically, a total amount of 54,600 videos are recorded from 75 subjects with 225 realistic masks by 7 new kinds of sensors. Together with the dataset, we propose a novel Contrastive Context-aware Learning framework, namely CCL. CCL is a new training methodology for supervised PAD tasks, which is able to learn by leveraging rich contexts accurately (e.g., subjects, mask material and lighting) among pairs of live faces and high-fidelity mask attacks. Extensive experimental evaluations on HiFiMask and three additional 3D mask datasets demonstrate the effectiveness of our method.
The threat of 3D masks to face recognition systems is increasingly serious and has been widely concerned by researchers. To facilitate the study of the algorithms, a large-scale High-Fidelity Mask dataset, namely CASIA-SURF HiFiMask (briefly HiFiMask) has been collected. Specifically, it consists of a total amount of 54, 600 videos which are recorded from 75 subjects with 225 realistic masks under 7 new kinds of sensors. Based on this dataset and Protocol 3 which evaluates both the discrimination and generalization ability of the algorithm under the open set scenarios, we organized a 3D High-Fidelity Mask Face Presentation Attack Detection Challenge to boost the research of 3D mask-based attack detection. It attracted 195 teams for the development phase with a total of 18 teams qualifying for the final round. All the results were verified and re-run by the organizing team, and the results were used for the final ranking. This paper presents an overview of the challenge, including the introduction of the dataset used, the definition of the protocol, the calculation of the evaluation criteria, and the summary and publication of the competition results. Finally, we focus on introducing and analyzing the top ranking algorithms, the conclusion summary, and the research ideas for mask attack detection provided by this competition.
3D mask face presentation attack detection (PAD) plays a vital role in securing face recognition systems from emergent 3D mask attacks. Recently, remote photoplethysmography (rPPG) has been developed as an intrinsic liveness clue for 3D mask PAD without relying on the mask appearance. However, the rPPG features for 3D mask PAD are still needed expert knowledge to design manually, which limits its further progress in the deep learning and big data era. In this letter, we propose a pure rPPG transformer (TransRPPG) framework for learning intrinsic liveness representation efficiently. At first, rPPG-based multi-scale spatial-temporal maps (MSTmap) are constructed from facial skin and background regions. Then the transformer fully mines the global relationship within MSTmaps for liveness representation, and gives a binary prediction for 3D mask detection. Comprehensive experiments are conducted on two benchmark datasets to demonstrate the efficacy of the TransRPPG on both intra- and cross-dataset testings. Our TransRPPG is lightweight and efficient (with only 547K parameters and 763M FLOPs), which is promising for mobile-level applications.
Data-driven automatic approaches have demonstrated their great potential in resolving various clinical diagnostic dilemmas for patients with malignant gliomas in neuro-oncology with the help of conventional and advanced molecular MR images. However, the lack of sufficient annotated MRI data has vastly impeded the development of such automatic methods. Conventional data augmentation approaches, including flipping, scaling, rotation, and distortion are not capable of generating data with diverse image content. In this paper, we propose a method, called synthesis of anatomic and molecular MR images network (SAMR), which can simultaneously synthesize data from arbitrary manipulated lesion information on multiple anatomic and molecular MRI sequences, including T1-weighted (T1w), gadolinium enhanced T1w (Gd-T1w), T2-weighted (T2w), fluid-attenuated inversion recovery (FLAIR), and amide proton transfer-weighted (APTw). The proposed framework consists of a stretch-out up-sampling module, a brain atlas encoder, a segmentation consistency module, and multi-scale label-wise discriminators. Extensive experiments on real clinical data demonstrate that the proposed model can perform significantly better than the state-of-the-art synthesis methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا