No Arabic abstract
Robust model-fitting to spectroscopic transitions is a requirement across many fields of science. The corrected Akaike and Bayesian information criteria (AICc and BIC) are most frequently used to select the optimal number of fitting parameters. In general, AICc modelling is thought to overfit (too many model parameters) and BIC underfits. For spectroscopic modelling, both AICc and BIC lack in two important respects: (a) no penalty distinction is made according to line strength such that parameters of weak lines close to the detection threshold are treated with equal importance as strong lines and (b) no account is taken of the way in which spectral lines impact on narrow data regions. In this paper we introduce a new information criterion that addresses these shortcomings, the Spectral Information Criterion (SpIC). Spectral simulations are used to compare performances. The main findings are (i) SpIC clearly outperforms AICc for high signal to noise data, (ii) SpIC and AICc work equally well for lower signal to noise data, although SpIC achieves this with fewer parameters, and (iii) BIC does not perform well (for this application) and should be avoided. The new method should be of broader applicability (beyond spectroscopy), wherever different model parameters influence separated small ranges within a larger dataset and/or have widely varying sensitivities.
Model fitting is possibly the most extended problem in science. Classical approaches include the use of least-squares fitting procedures and maximum likelihood methods to estimate the value of the parameters in the model. However, in recent years, Bayesian inference tools have gained traction. Usually, Markov chain Monte Carlo methods are applied to inference problems, but they present some disadvantages, particularly when comparing different models fitted to the same dataset. Other Bayesian methods can deal with this issue in a natural and effective way. We have implemented an importance sampling algorithm adapted to Bayesian inference problems in which the power of the noise in the observations is not known a priori. The main advantage of importance sampling is that the model evidence can be derived directly from the so-called importance weights -- while MCMC methods demand considerable postprocessing. The use of our adaptive target, adaptive importance sampling (ATAIS) method is shown by inferring, on the one hand, the parameters of a simulated flaring event which includes a damped oscillation {and, on the other hand, real data from the Kepler mission. ATAIS includes a novel automatic adaptation of the target distribution. It automatically estimates the variance of the noise in the model. ATAIS admits parallelisation, which decreases the computational run-times notably. We compare our method against a nested sampling method within a model selection problem.
Multi-threaded programs have traditionally fallen into one of two domains: cooperative and competitive. These two domains have traditionally remained mostly disjoint, with cooperative threading used for increasing throughput in compute-intensive applications such as scientific workloads and cooperative threading used for increasing responsiveness in interactive applications such as GUIs and games. As multicore hardware becomes increasingly mainstream, there is a need for bridging these two disjoint worlds, because many applications mix interaction and computation and would benefit from both cooperative and competitive threading. In this paper, we present techniques for programming and reasoning about parallel interactive applications that can use both cooperative and competitive threading. Our techniques enable the programmer to write rich parallel interactive programs by creating and synchronizing with threads as needed, and by assigning threads user-defined and partially ordered priorities. To ensure important responsiveness properties, we present a modal type system analogous to S4 modal logic that precludes low-priority threads from delaying high-priority threads, thereby statically preventing a crucial set of priority-inversion bugs. We then present a cost model that allows reasoning about responsiveness and completion time of well-typed programs. The cost model extends the traditional work-span model for cooperative threading to account for competitive scheduling decisions needed to ensure responsiveness. Finally, we show that our proposed techniques are realistic by implementing them as an extension to the Standard ML language.
In experiments searching for axionic dark matter, the use of the standard threshold-based data analysis discards valuable information. We present a Bayesian analysis framework that builds on an existing processing protocol to extract more information from the data of coherent axion detectors such as operating haloscopes. The analysis avoids logical subtleties that accompany the standard analysis framework and enables greater experimental flexibility on future data runs. Performing this analysis on the existing data from the HAYSTAC experiment, we find improved constraints on the axion-photon coupling $g_gamma$ while also identifying the most promising regions of parameter space within the $23.15$--$24.0$ $mu$eV mass range. A comparison with the standard threshold analysis suggests a $36%$ improvement in scan rate from our analysis, demonstrating the utility of this framework for future axion haloscope analyses.
A major trend in academia and data science is the rapid adoption of Bayesian statistics for data analysis and modeling, leading to the development of probabilistic programming languages (PPL). A PPL provides a framework that allows users to easily specify a probabilistic model and perform inference automatically. PyAutoFit is a Python-based PPL which interfaces with all aspects of the modeling (e.g., the model, data, fitting procedure, visualization, results) and therefore provides complete management of every aspect of modeling. This includes composing high-dimensionality models from individual model components, customizing the fitting procedure and performing data augmentation before a model-fit. Advanced features include database tools for analysing large suites of modeling results and exploiting domain-specific knowledge of a problem via non-linear search chaining. Accompanying PyAutoFit is the autofit workspace (see https://github.com/Jammy2211/autofit_workspace), which includes example scripts and the HowToFit lecture series which introduces non-experts to model-fitting and provides a guide on how to begin a project using PyAutoFit. Readers can try PyAutoFit right now by going to the introduction Jupyter notebook on Binder (see https://mybinder.org/v2/gh/Jammy2211/autofit_workspace/HEAD) or checkout our readthedocs(see https://pyautofit.readthedocs.io/en/latest/) for a complete overview of PyAutoFits features.
We show that dynamical gain modulation of neurons stimulus response is described as an information-theoretic cycle that generates entropy associated with the stimulus-related activity from entropy produced by the modulation. To articulate this theory, we describe stimulus-evoked activity of a neural population based on the maximum entropy principle with constraints on two types of overlapping activities, one that is controlled by stimulus conditions and the other, termed internal activity, that is regulated internally in an organism. We demonstrate that modulation of the internal activity realises gain control of stimulus response, and controls stimulus information. A cycle of neural dynamics is then introduced to model information processing by the neurons during which the stimulus information is dynamically enhanced by the internal gain-modulation mechanism. Based on the conservation law for entropy production, we demonstrate that the cycle generates entropy ascribed to the stimulus-related activity using entropy supplied by the internal mechanism, analogously to a heat engine that produces work from heat. We provide an efficient cycle that achieves the highest entropic efficiency to retain the stimulus information. The theory allows us to quantify efficiency of the internal computation and its theoretical limit.