Do you want to publish a course? Click here

Adversarial Image Composition with Auxiliary Illumination

159   0   0.0 ( 0 )
 Added by Fangneng Zhan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Dealing with the inconsistency between a foreground object and a background image is a challenging task in high-fidelity image composition. State-of-the-art methods strive to harmonize the composed image by adapting the style of foreground objects to be compatible with the background image, whereas the potential shadow of foreground objects within the composed image which is critical to the composition realism is largely neglected. In this paper, we propose an Adversarial Image Composition Net (AIC-Net) that achieves realistic image composition by considering potential shadows that the foreground object projects in the composed image. A novel branched generation mechanism is proposed, which disentangles the generation of shadows and the transfer of foreground styles for optimal accomplishment of the two tasks simultaneously. A differentiable spatial transformation module is designed which bridges the local harmonization and the global harmonization to achieve their joint optimization effectively. Extensive experiments on pedestrian and car composition tasks show that the proposed AIC-Net achieves superior composition performance qualitatively and quantitatively.



rate research

Read More

Image captioning is a challenging computer vision task, which aims to generate a natural language description of an image. Most recent researches follow the encoder-decoder framework which depends heavily on the previous generated words for the current prediction. Such methods can not effectively take advantage of the future predicted information to learn complete semantics. In this paper, we propose Context-Aware Auxiliary Guidance (CAAG) mechanism that can guide the captioning model to perceive global contexts. Upon the captioning model, CAAG performs semantic attention that selectively concentrates on useful information of the global predictions to reproduce the current generation. To validate the adaptability of the method, we apply CAAG to three popular captioners and our proposal achieves competitive performance on the challenging Microsoft COCO image captioning benchmark, e.g. 132.2 CIDEr-D score on Karpathy split and 130.7 CIDEr-D (c40) score on official online evaluation server.
396 - Yu Zeng , Zhe Lin , Huchuan Lu 2020
Recent deep generative inpainting methods use attention layers to allow the generator to explicitly borrow feature patches from the known region to complete a missing region. Due to the lack of supervision signals for the correspondence between missing regions and known regions, it may fail to find proper reference features, which often leads to artifacts in the results. Also, it computes pair-wise similarity across the entire feature map during inference bringing a significant computational overhead. To address this issue, we propose to teach such patch-borrowing behavior to an attention-free generator by joint training of an auxiliary contextual reconstruction task, which encourages the generated output to be plausible even when reconstructed by surrounding regions. The auxiliary branch can be seen as a learnable loss function, i.e. named as contextual reconstruction (CR) loss, where query-reference feature similarity and reference-based reconstructor are jointly optimized with the inpainting generator. The auxiliary branch (i.e. CR loss) is required only during training, and only the inpainting generator is required during the inference. Experimental results demonstrate that the proposed inpainting model compares favourably against the state-of-the-art in terms of quantitative and visual performance.
This paper presents a novel intrinsic image transfer (IIT) algorithm for illumination manipulation, which creates a local image translation between two illumination surfaces. This model is built on an optimization-based framework consisting of three photo-realistic losses defined on the sub-layers factorized by an intrinsic image decomposition. We illustrate that all losses can be reduced without the necessity of taking an intrinsic image decomposition under the well-known spatial-varying illumination illumination-invariant reflectance prior knowledge. Moreover, with a series of relaxations, all of them can be directly defined on images, giving a closed-form solution for image illumination manipulation. This new paradigm differs from the prevailing Retinex-based algorithms, as it provides an implicit way to deal with the per-pixel image illumination. We finally demonstrate its versatility and benefits to the illumination-related tasks such as illumination compensation, image enhancement, and high dynamic range (HDR) image compression, and show the high-quality results on natural image datasets.
Recently image-to-image translation has received increasing attention, which aims to map images in one domain to another specific one. Existing methods mainly solve this task via a deep generative model, and focus on exploring the relationship between different domains. However, these methods neglect to utilize higher-level and instance-specific information to guide the training process, leading to a great deal of unrealistic generated images of low quality. Existing methods also lack of spatial controllability during translation. To address these challenge, we propose a novel Segmentation Guided Generative Adversarial Networks (SGGAN), which leverages semantic segmentation to further boost the generation performance and provide spatial mapping. In particular, a segmentor network is designed to impose semantic information on the generated images. Experimental results on multi-domain face image translation task empirically demonstrate our ability of the spatial modification and our superiority in image quality over several state-of-the-art methods.
Despite convolutional network-based methods have boosted the performance of single image super-resolution (SISR), the huge computation costs restrict their practical applicability. In this paper, we develop a computation efficient yet accurate network based on the proposed attentive auxiliary features (A$^2$F) for SISR. Firstly, to explore the features from the bottom layers, the auxiliary feature from all the previous layers are projected into a common space. Then, to better utilize these projected auxiliary features and filter the redundant information, the channel attention is employed to select the most important common feature based on current layer feature. We incorporate these two modules into a block and implement it with a lightweight network. Experimental results on large-scale dataset demonstrate the effectiveness of the proposed model against the state-of-the-art (SOTA) SR methods. Notably, when parameters are less than 320k, A$^2$F outperforms SOTA methods for all scales, which proves its ability to better utilize the auxiliary features. Codes are available at https://github.com/wxxxxxxh/A2F-SR.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا