Do you want to publish a course? Click here

Micro- Mechanical assembly of high-quality Fabry-Perot microcavities for the integration with two-dimensional materials

142   0   0.0 ( 0 )
 Added by Christian Schneider
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Integrating monolayers of two-dimensional semiconductors in planar, and potentially microstructured microcavities is challenging because of the few, available approaches to overgrow the monolayers without damaging them. Some strategies have been developed, but they either rely on complicated experimental settings, expensive technologies or compromise the available quality factors. As a result, high quality Fabry-Perot microcavities are not widely available to the community focusing on light-matter coupling with atomically thin materials. Here, we provide details on a recently developed technique to micro-mechanically assemble Fabry-Perot Microcavities. Our approach does not rely on difficult or expensive technologies, and yields device characteristics marking the state of the art in cavities with integrated atomically thin semiconductors.



rate research

Read More

We report on the thermomechanical and thermal tuning properties of curved-mirror Fabry-Perot resonators, fabricated by the guided assembly of circular delamination buckles within a multilayer a-Si/SiO2 stack. Analytical models for temperature dependence, effective spring constants, and mechanical mode frequencies are described and shown to be in good agreement with experimental results. The cavities exhibit mode volumes as small as $sim10lambda^3$, reflectance-limited finesse $sim3times10^3$, and mechanical resonance frequencies in the MHz range. Monolithic cavity arrays of this type might be of interest for applications in sensing, cavity quantum electrodynamics, and optomechanics.
73 - E. Janitz , M. Ruf , Y. Fontana 2017
Fiber-based optical microcavities exhibit high quality factor and low mode volume resonances that make them attractive for coupling light to individual atoms or other microscopic systems. Moreover, their low mass should lead to excellent mechanical response up to high frequencies, opening the possibility for high bandwidth stabilization of the cavity length. Here, we demonstrate a locking bandwidth of 44 kHz achieved using a simple, compact design that exploits these properties. Owing to the simplicity of fiber feedthroughs and lack of free-space alignment, this design is inherently compatible with vacuum and cryogenic environments. We measure the transfer function of the feedback circuit (closed-loop) and the cavity mount itself (open-loop), which, combined with simulations of the mechanical response of our device, provide insight into underlying limitations of the design as well as further improvements that can be made.
Surface acoustic wave (SAW) resonators are critical components in wireless communications and many sensing applications. They have also recently emerged as subject of study in quantum acoustics at the single phonon level. Acoustic loss reduction and mode confinement are key performance factors in SAW resonators. Here we report the design and experimental realization of a high quality factor Fabry-Perot SAW resonators formed in between tapered phononic crystal mirrors patterned on a GaN-on-sapphire material platform . The fabricated SAW resonators are characterized by both electrical network analyzer and optical heterodyne vibrometer. We observed standing Rayleigh wave inside the cavity, with an intrinsic quality factor exceeding 13,000 at ambient conditions.
CONSPECTUS: Two-dimensional (2D) compound materials are promising materials for use in electronics, optoelectronics, flexible devices, etc. because they are ultrathin and cover a wide range of properties. Among all methods to prepare 2D materials, chemical vapor deposition (CVD) is promising because it produces materials with a high quality and reasonable cost. So far, much efforts have been made to produce 2D compound materials with large domain size, controllable number of layers, fast-growth rate, and high quality features, etc. However, due to the complicated growth mechanism like sublimation and diffusion processes of multiple precursors, maintaining the controllability, repeatability, and high quality of CVD grown 2D binary and ternary materials is still a big challenge, which prevents their widespread use. Here, taking 2D transition metal dichalcogenides (TMDCs) as examples, we review current progress and highlight some promising growth strategies for the growth of 2D compound materials. The key technology issues which affect the CVD process, including non-metal precursor, metal precursor, substrate engineering, temperature, and gas flow, are discussed. Also, methods in improving the quality of CVD-grown 2D materials and current understanding on their growth mechanism are highlighted. Finally, challenges and opportunities in this field are proposed. We believe this review will guide the future design of controllable CVD systems for the growth of 2D compound materials with good controllability and high quality, laying the foundations for their potential applications.
While nanoscale color generations have been studied for years, high performance transmission structural colors, simultaneously equipped with large gamut, high resolution, low loss and optical multiplexing abilities, still remain as a hanging issue. Here, beneficial from metasurfaces, we demonstrate a silicon metasurface embedded Fabry-Perot cavity (meta-FP cavity), with polydimethylsiloxanes (PDMS) surrounding media and silver film mirrors. By changing the planar geometries of the embedded nanopillars, the meta-FP cavity provides transmission colors with ultra large gamut of 194% sRGB and ultrahigh resolution of 141111 DPI, along with considerably average transmittance of 43% and more than 300% enhanced angular tolerance. Such high density allows two-dimensional color mixing at diffraction limit scale. The color gamut and the resolution can be flexibly tuned and improved by modifying the silver film thickness and the lattice period. The polarization manipulation ability of the metasurface also enables arbitrary color arrangement between cyan and red for two orthogonal linear polarization states, at deep subwavelength scale. Our proposed cavities can be used in filters, printings, optical storages and many other applications in need of high quality and density colors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا