Do you want to publish a course? Click here

Bit-Exact ECC Recovery (BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM Data Retention Characteristics

92   0   0.0 ( 0 )
 Added by Minesh Patel
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Increasing single-cell DRAM error rates have pushed DRAM manufacturers to adopt on-die error-correction coding (ECC), which operates entirely within a DRAM chip to improve factory yield. The on-die ECC function and its effects on DRAM reliability are considered trade secrets, so only the manufacturer knows precisely how on-die ECC alters the externally-visible reliability characteristics. Consequently, on-die ECC obstructs third-party DRAM customers (e.g., test engineers, experimental researchers), who typically design, test, and validate systems based on these characteristics. To give third parties insight into precisely how on-die ECC transforms DRAM error patterns during error correction, we introduce Bit-Exact ECC Recovery (BEER), a new methodology for determining the full DRAM on-die ECC function (i.e., its parity-check matrix) without hardware tools, prerequisite knowledge about the DRAM chip or on-die ECC mechanism, or access to ECC metadata (e.g., error syndromes, parity information). BEER exploits the key insight that non-intrusively inducing data-retention errors with carefully-crafted test patterns reveals behavior that is unique to a specific ECC function. We use BEER to identify the ECC functions of 80 real LPDDR4 DRAM chips with on-die ECC from three major DRAM manufacturers. We evaluate BEERs correctness in simulation and performance on a real system to show that BEER is effective and practical across a wide range of on-die ECC functions. To demonstrate BEERs value, we propose and discuss several ways that third parties can use BEER to improve their design and testing practices. As a concrete example, we introduce and evaluate BEEP, the first error profiling methodology that uses the known on-die ECC function to recover the number and bit-exact locations of unobservable raw bit errors responsible for observable post-correction errors.



rate research

Read More

66 - Hasan Hassan 2016
DRAM-based memory is a critical factor that creates a bottleneck on the system performance since the processor speed largely outperforms the DRAM latency. In this thesis, we develop a low-cost mechanism, called ChargeCache, which enables faster access to recently-accessed rows in DRAM, with no modifications to DRAM chips. Our mechanism is based on the key observation that a recently-accessed row has more charge and thus the following access to the same row can be performed faster. To exploit this observation, we propose to track the addresses of recently-accessed rows in a table in the memory controller. If a later DRAM request hits in that table, the memory controller uses lower timing parameters, leading to reduced DRAM latency. Row addresses are removed from the table after a specified duration to ensure rows that have leaked too much charge are not accessed with lower latency. We evaluate ChargeCache on a wide variety of workloads and show that it provides significant performance and energy benefits for both single-core and multi-core systems.
As DRAM technology continues to evolve towards smaller feature sizes and increased densities, faults in DRAM subsystem are becoming more severe. Current servers mostly use CHIPKILL based schemes to tolerate up-to one/two symbol errors per DRAM beat. Multi-symbol errors arising due to faults in multiple data buses and chips may not be detected by these schemes. In this paper, we introduce Single Symbol Correction Multiple Symbol Detection (SSCMSD) - a novel error handling scheme to correct single-symbol errors and detect multi-symbol errors. Our scheme makes use of a hash in combination with Error Correcting Code (ECC) to avoid silent data corruptions (SDCs). SSCMSD can also enhance the capability of detecting errors in address bits. We employ 32-bit CRC along with Reed-Solomon code to implement SSCMSD for a x4 based DDRx system. Our simulations show that the proposed scheme effectively prevents SDCs in the presence of multiple symbol errors. Our novel design enabled us to achieve this without introducing additional READ latency. Also, we need 19 chips per rank (storage overhead of 18.75 percent), 76 data bus-lines and additional hash-logic at the memory controller.
This paper summarizes the idea of Subarray-Level Parallelism (SALP) in DRAM, which was published in ISCA 2012, and examines the works significance and future potential. Modern DRAMs have multiple banks to serve multiple memory requests in parallel. However, when two requests go to the same bank, they have to be served serially, exacerbating the high latency of on-chip memory. Adding more banks to the system to mitigate this problem incurs high system cost. Our goal in this work is to achieve the benefits of increasing the number of banks with a low-cost approach. To this end, we propose three new mechanisms, SALP-1, SALP-2, and MASA (Multitude of Activated Subarrays), to reduce the serialization of different requests that go to the same bank. The key observation exploited by our mechanisms is that a modern DRAM bank is implemented as a collection of subarrays that operate largely independently while sharing few global peripheral structures. Our three proposed mechanisms mitigate the negative impact of bank serialization by overlapping different components of the bank access latencies of multiple requests that go to different subarrays within the same bank. SALP-1 requires no changes to the existing DRAM structure, and needs to only reinterpret some of the existing DRAM timing parameters. SALP-2 and MASA require only modest changes (< 0.15% area overhead) to the DRAM peripheral structures, which are much less design constrained than the DRAM core. Our evaluations show that SALP-1, SALP-2 and MASA significantly improve performance for both single-core systems (7%/13%/17%) and multi-core systems (15%/16%/20%), averaged across a wide range of workloads. We also demonstrate that our mechanisms can be combined with application-aware memory request scheduling in multicore systems to further improve performance and fairness.
Processing-using-DRAM has been proposed for a limited set of basic operations (i.e., logic operations, addition). However, in order to enable the full adoption of processing-using-DRAM, it is necessary to provide support for more complex operations. In this paper, we propose SIMDRAM, a flexible general-purpose processing-using-DRAM framework that enables massively-parallel computation of a wide range of operations by using each DRAM column as an independent SIMD lane to perform bit-serial operations. SIMDRAM consists of three key steps to enable a desired operation in DRAM: (1) building an efficient majority-based representation of the desired operation, (2) mapping the operation input and output operands to DRAM rows and to the required DRAM commands that produce the desired operation, and (3) executing the operation. These three steps ensure efficient computation of any arbitrary and complex operation in DRAM. The first two steps give users the flexibility to efficiently implement and compute any desired operation in DRAM. The third step controls the execution flow of the in-DRAM computation, transparently from the user. We comprehensively evaluate SIMDRAMs reliability, area overhead, operation throughput, and energy efficiency using a wide range of operations and seven diverse real-world kernels to demonstrate its generality. Our results show that SIMDRAM provides up to 5.1x higher operation throughput and 2.5x higher energy efficiency than a state-of-the-art in-DRAM computing mechanism, and up to 2.5x speedup for real-world kernels while incurring less than 1% DRAM chip area overhead. Compared to a CPU and a high-end GPU, SIMDRAM is 257x and 31x more energy-efficient, while providing 93x and 6x higher operation throughput, respectively.
DRAM is the prevalent main memory technology, but its long access latency can limit the performance of many workloads. Although prior works provide DRAM designs that reduce DRAM access latency, their reduced storage capacities hinder the performance of workloads that need large memory capacity. Because the capacity-latency trade-off is fixed at design time, previous works cannot achieve maximum performance under very different and dynamic workload demands. This paper proposes Capacity-Latency-Reconfigurable DRAM (CLR-DRAM), a new DRAM architecture that enables dynamic capacity-latency trade-off at low cost. CLR-DRAM allows dynamic reconfiguration of any DRAM row to switch between two operating modes: 1) max-capacity mode, where every DRAM cell operates individually to achieve approximately the same storage density as a density-optimized commodity DRAM chip and 2) high-performance mode, where two adjacent DRAM cells in a DRAM row and their sense amplifiers are coupled to operate as a single low-latency logical cell driven by a single logical sense amplifier. We implement CLR-DRAM by adding isolation transistors in each DRAM subarray. Our evaluations show that CLR-DRAM can improve system performance and DRAM energy consumption by 18.6% and 29.7% on average with four-core multiprogrammed workloads. We believe that CLR-DRAM opens new research directions for a system to adapt to the diverse and dynamically changing memory capacity and access latency demands of workloads.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا