Do you want to publish a course? Click here

Energy and Flow Effects of Optimal Automated Driving in Mixed Traffic: Vehicle-in-the-Loop Experimental Results

68   0   0.0 ( 0 )
 Added by Tyler Ard
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper experimentally demonstrates the effectiveness of an anticipative car-following algorithm in reducing energy use of gasoline engine and electric Connected and Automated Vehicles (CAV), without sacrificing safety and traffic flow. We propose a Vehicle-in-the-Loop (VIL) testing environment in which experimental CAVs driven on a track interact with surrounding virtual traffic in real-time. We explore the energy savings when following city and highway drive cycles, as well as in emergent highway traffic created from microsimulations. Model predictive control handles high level velocity planning and benefits from communicated intentions of a preceding CAV or estimated probable motion of a preceding human driven vehicle. A combination of classical feedback control and data-driven nonlinear feedforward control of pedals achieve acceleration tracking at the low level. The controllers are implemented in ROS and energy is measured via calibrated OBD-II readings. We report up to 30% improved energy economy compared to realistically calibrated human driver car-following without sacrificing following headway.



rate research

Read More

This paper studies the energy and traffic impact of a proposed Anticipative Cruise Controller in a PTV VISSIM microsimulation environment. We dissect our controller into two parts: 1. the anticipative mode, more immediately beneficial when automated vehicle fleet penetration is low, and 2. the connected mode, beneficial in coordinated car-following scenarios and high automated vehicle penetrations appropriate for autonomous vehicle specific applications. Probabilistic constraints handle safety considerations, and vehicle constraints for acceleration capabilities are expressed through the use of powertrain maps. Real traffic scenarios are then modeled using time headway distributions from traffic data. To study impact over a range of demands, we vary input vehicle volume from low to high and then vary automated vehicle penetration from low to high. When examining all-human driving scenarios, network capacity failed to meet demand in high-volume scenarios, such as rush-hour traffic. We further find that with automated vehicles introduced which utilize probabilistic constraints to balance safety and traffic compactness, network capacity was improved to support the high-volume scenarios. Finally, we examine energy efficiencies of the fleet for conventional, electric, and hybrid vehicles. We find that automated vehicles perform at a 10% - 20% higher energy efficiency over human drivers when considering conventional powertrains, and find that automated vehicles perform at a 3% - 9% higher energy efficiency over human drivers when considering electric and hybrid powertrains. Due to secondary effects of smoothing traffic flow, energy benefits also apply to human-driven vehicles that interact with automated ones. Such simulated humans were found to drive up to 10% more energy-efficiently than they did in the baseline all-human scenario.
The paper considers the problem of controlling Connected and Automated Vehicles (CAVs) traveling through a three-entry roundabout so as to jointly minimize both the travel time and the energy consumption while providing speed-dependent safety guarantees, as well as satisfying velocity and acceleration constraints. We first design a systematic approach to dynamically determine the safety constraints and derive the unconstrained optimal control solution. A joint optimal control and barrier function (OCBF) method is then applied to efficiently obtain a controller that optimally track the unconstrained optimal solution while guaranteeing all the constraints. Simulation experiments are performed to compare the optimal controller to a baseline of human-driven vehicles showing effectiveness under symmetric and asymmetric roundabout configurations, balanced and imbalanced traffic rates and different sequencing rules for CAVs.
This work presents an integrated framework of: vehicle dynamics models, with a particular attention to instabilities and traffic waves; vehicle energy models, with particular attention to accurate energy values for strongly unsteady driving profiles; and sparse Lagrangian controls via automated vehicles, with a focus on controls that can be executed via existing technology such as adaptive cruise control systems. This framework serves as a key building block in developing control strategies for human-in-the-loop traffic flow smoothing on real highways. In this contribution, we outline the fundamental merits of integrating vehicle dynamics and energy modeling into a single framework, and we demonstrate the energy impact of sparse flow smoothing controllers via simulation results.
This paper presents a cooperative vehicle sorting strategy that seeks to optimally sort connected and automated vehicles (CAVs) in a multi-lane platoon to reach an ideally organized platoon. In the proposed method, a CAV platoon is firstly discretized into a grid system, where a CAV moves from one cell to another in the discrete time-space domain. Then, the cooperative sorting problem is modeled as a path-finding problem in the graphic domain. The problem is solved by the deterministic Astar algorithm with a stepwise strategy, where only one vehicle can move within a movement step. The resultant shortest path is further optimized with an integer linear programming algorithm to minimize the sorting time by allowing multiple movements within a step. To improve the algorithm running time and address multiple shortest paths, a distributed stochastic Astar algorithm (DSA) is developed by introducing random disturbances to the edge costs to break uniform paths (with equal path cost). Numerical experiments are conducted to demonstrate the effectiveness of the proposed DSA method. The results report shorter sorting time and significantly improved algorithm running time due to the use of DSA. In addition, we find that the optimization performance can be further improved by increasing the number of processes in the distributed computing system.
132 - Tianci Yang , Chen Lv 2021
Connected and Automated Vehicles (CAVs) rely on the correctness of position and other vehicle kinematics information to fulfill various driving tasks such as vehicle following, lane change, and collision avoidance. However, a malicious vehicle may send false sensor information to the other vehicles intentionally or unintentionally, which may cause traffic inconvenience or loss of human lives. Here, we take the advantage of cloud-computing and increase the resilience of CAVs to malicious vehicles by assuming each vehicle shares its local sensor information with other vehicles to create information redundancy on the cloud side. We exploit this redundancy and propose a sensor fusion algorithm for the cloud, capable of providing a robust state estimation of all vehicles in the cloud under the condition that the number of malicious information is sufficiently small. Using the proposed estimator, we provide an algorithm for isolating malicious vehicles. We use numerical examples to illustrate the effectiveness of our methods.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا