No Arabic abstract
We present a lensed quasar search based on the variability of lens systems in the HSC transient survey. Starting from 101,353 variable objects with i-band photometry in the HSC transient survey, we used a variability-based lens search method measuring the spatial extent in difference images to select potential lensed quasar candidates. We adopted conservative constraints in this variability selection and obtained 83,657 variable objects as possible lens candidates. We then ran CHITAH, a lens search algorithm based on the image configuration, on those 83,657 variable objects, and 2,130 variable objects were identified as potential lensed objects. We visually inspected the 2,130 variable objects, and seven of them are our final lensed quasar candidates. Additionally, we found one lensed galaxy candidate as a serendipitous discovery. Among the eight final lensed candidates, one is the only known quadruply lensed quasar in the survey field, HSCJ095921+020638. None of the other seven lensed candidates have been previously classified as a lens nor a lensed candidate. Three of the five final candidates with available HST images, including HSCJ095921+020638, show clues of a lensed feature in the HST images. A tightening of variability selection criteria might result in the loss of possible lensed quasar candidates, especially the lensed quasars with faint brightness or narrow separation, without efficiently eliminating the non-lensed objects; CHITAH is therefore important as an advanced examination to improve the lens search efficiency through the object configuration. The recovery of HSCJ095921+020638 proves the effectiveness of the variability-based lens search method, and this lens search method can be used in other cadenced imaging surveys, such as the upcoming Rubin Observatory Legacy Survey of Space and Time.
Gravitationally lensed quasars are useful for studying astrophysics and cosmology, and enlarging the sample size of lensed quasars is important for multiple studies. In this work, we develop a lens search algorithm for four-image (quad) lensed quasars based on their time variability. In the development of the lens search algorithm, we constructed a pipeline simulating multi-epoch images of lensed quasars in cadenced surveys, accounting for quasar variabilities, quasar hosts, lens galaxies, and the PSF variation. Applying the simulation pipeline to the Hyper Suprime-Cam (HSC) transient survey, we generated HSC-like difference images of the mock lensed quasars from Oguri & Marshalls lens catalog. We further developed a lens search algorithm that picks out variable objects as lensed quasar candidates based on their spatial extent in the difference images. We tested our lens search algorithm with the mock lensed quasars and variable objects from the HSC transient survey. Using difference images from multiple epochs, our lens search algorithm achieves a high true-positive rate (TPR) of 90.1% and a low false-positive rate (FPR) of 2.3% for the bright quads with wide separation. With a preselection of the number of blobs in the difference image, we obtain a TPR of 97.6% and a FPR of 2.6% for the bright quads with wide separation. Even when difference images are only available in one single epoch, our lens search algorithm can still detect the bright quads with wide separation at high TPR of 97.6% and low FPR of 2.4% in the optimal seeing scenario, and at TPR of $sim94%$ and FPR of $sim5%$ in typical scenarios. Therefore, our lens search algorithm is promising and is applicable to ongoing and upcoming cadenced surveys, particularly the HSC transient survey and the Rubin Observatory Legacy Survey of Space and Time, for finding new lensed quasar systems. [abridged]
Strong gravitationally lensed quasars provide powerful means to study galaxy evolution and cosmology. We use Chitah to hunt for new lens systems in the Hyper Suprime$-$Cam Subaru Strategic Program (HSC SSP) S16A. We present 46 lens candidates, of which 3 are previously known. Including 2 additional lenses found by YattaLens, we obtain X-shooter spectra of 6 promising candidates for lens confirmation and redshift measurements. We report new spectroscopic redshift measurements for both the lens and source galaxies in 4 lens systems. We apply the lens modeling software Glee to model our 6 X-shooter lenses uniformly. Through our analysis of the HSC images, we find that HSCJ022622$-$042522, HSCJ115252$+$004733, and HSCJ141136$-$010216 have point-like lensed images, and that the lens light distribution is well aligned with mass distribution within 6 deg. Thanks to the X-shooter spectra, we estimate fluxes on the Baldwin- Phillips-Terlevich (BPT) diagram, and find that HSCJ022622$-$042522 has a probable quasar source, based on the upper limit of the Nii flux intensity. We also measure the FWHM of Ly$alpha$ emission of HSCJ141136$-$010216 to be $sim$254 km/s, showing that it is a probable Lyman-$alpha$ emitter.
We present spectroscopic confirmation of three new two-image gravitationally lensed quasars, compiled from existing strong lens and X-ray catalogs. Images of HSC J091843.27$-$022007.5 show a red galaxy with two blue point sources at either side, separated by 2.26 arcsec. This system has a source and a lens redshifts $z_s=0.804$ and $z_{ell}=0.459$, respectively, as obtained by our follow-up spectroscopic data. CXCO J100201.50$+$020330.0 shows two point sources separated by 0.85 arcsec on either side of an early-type galaxy. The follow-up spectroscopic data confirm the fainter quasar has the same redshift with the brighter quasar from the SDSS fiber spectrum at $z_s=2.016$. The deflecting foreground galaxy is a typical early-type galaxy at a redshift of $z_{ell}=0.439$. SDSS J135944.21$+$012809.8 has two point sources with quasar spectra at the same redshift $z_s=1.096$, separated by 1.05 arcsec, and fits to the HSC images confirm the presence of a galaxy between these. These discoveries demonstrate the power of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP)s deep imaging and wide sky coverage. Combined with existing X-ray source catalogues and follow-up spectroscopy, the HSC-SSP provides us unique opportunities to find multiple-image quasars lensed by a foreground galaxy.
We have carried out a systematic search for galaxy-scale strong lenses in multiband imaging from the Hyper Suprime-Cam (HSC) survey. Our automated pipeline, based on realistic strong-lens simulations, deep neural network classification, and visual inspection, is aimed at efficiently selecting systems with wide image separations (Einstein radii ~1.0-3.0), intermediate redshift lenses (z ~ 0.4-0.7), and bright arcs for galaxy evolution and cosmology. We classified gri images of all 62.5 million galaxies in HSC Wide with i-band Kron radius >0.8 to avoid strict pre-selections and to prepare for the upcoming era of deep, wide-scale imaging surveys with Euclid and Rubin Observatory. We obtained 206 newly-discovered candidates classified as definite or probable lenses with either spatially-resolved multiple images or extended, distorted arcs. In addition, we found 88 high-quality candidates that were assigned lower confidence in previous HSC searches, and we recovered 173 known systems in the literature. These results demonstrate that, aided by limited human input, deep learning pipelines with false positive rates as low as ~0.01% can be very powerful tools for identifying the rare strong lenses from large catalogs, and can also largely extend the samples found by traditional algorithms. We provide a ranked list of candidates for future spectroscopic confirmation.
We report the largest sample of candidate strong gravitational lenses belonging to the Survey of Gravitationally-lensed Objects in HSC Imaging for group-to-cluster scale (SuGOHI-c) systems. These candidates are compiled from the S18A data release of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) Survey. We visually inspect $sim39,500$ galaxy clusters, selected from several catalogs, overlapping with the Wide, Deep, and UltraDeep fields, spanning the cluster redshift range $0.05<z_{cl}<1.38$. We discover 641 candidate lens systems, of which 536 are new. From the full sample, 47 are almost certainly bonafide lenses, 181 of them are highly probable lenses and 413 are possible lens systems. Additionally, we present 131 lens candidates at galaxy-scale serendipitously discovered during the inspection. We obtained spectroscopic follow-up of 10 candidates using the X-shooter. With this follow-up, we confirm 8 systems as strong gravitational lenses. Of the remaining two, one of the sources is too faint to detect any emission, and the other has a tentative redshift close to the lens redshift, but additional arcs in this system are yet to be observed spectroscopically. Since the HSC-SSP is an ongoing survey, we expect to find $sim600$ definite or probable lenses using this procedure and even more if combined with other lens finding methods.