Do you want to publish a course? Click here

Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News

220   0   0.0 ( 0 )
 Added by Reuben Tan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Large-scale dissemination of disinformation online intended to mislead or deceive the general population is a major societal problem. Rapid progression in image, video, and natural language generative models has only exacerbated this situation and intensified our need for an effective defense mechanism. While existing approaches have been proposed to defend against neural fake news, they are generally constrained to the very limited setting where articles only have text and metadata such as the title and authors. In this paper, we introduce the more realistic and challenging task of defending against machine-generated news that also includes images and captions. To identify the possible weaknesses that adversaries can exploit, we create a NeuralNews dataset composed of 4 different types of generated articles as well as conduct a series of human user study experiments based on this dataset. In addition to the valuable insights gleaned from our user study experiments, we provide a relatively effective approach based on detecting visual-semantic inconsistencies, which will serve as an effective first line of defense and a useful reference for future work in defending against machine-generated disinformation.



rate research

Read More

With the rapid evolution of social media, fake news has become a significant social problem, which cannot be addressed in a timely manner using manual investigation. This has motivated numerous studies on automating fake news detection. Most studies explore supervised training models with different modalities (e.g., text, images, and propagation networks) of news records to identify fake news. However, the performance of such techniques generally drops if news records are coming from different domains (e.g., politics, entertainment), especially for domains that are unseen or rarely-seen during training. As motivation, we empirically show that news records from different domains have significantly different word usage and propagation patterns. Furthermore, due to the sheer volume of unlabelled news records, it is challenging to select news records for manual labelling so that the domain-coverage of the labelled dataset is maximized. Hence, this work: (1) proposes a novel framework that jointly preserves domain-specific and cross-domain knowledge in news records to detect fake news from different domains; and (2) introduces an unsupervised technique to select a set of unlabelled informative news records for manual labelling, which can be ultimately used to train a fake news detection model that performs well for many domains while minimizing the labelling cost. Our experiments show that the integration of the proposed fake news model and the selective annotation approach achieves state-of-the-art performance for cross-domain news datasets, while yielding notable improvements for rarely-appearing domains in news datasets.
Fake news travels at unprecedented speeds, reaches global audiences and puts users and communities at great risk via social media platforms. Deep learning based models show good performance when trained on large amounts of labeled data on events of interest, whereas the performance of models tends to degrade on other events due to domain shift. Therefore, significant challenges are posed for existing detection approaches to detect fake news on emergent events, where large-scale labeled datasets are difficult to obtain. Moreover, adding the knowledge from newly emergent events requires to build a new model from scratch or continue to fine-tune the model, which can be challenging, expensive, and unrealistic for real-world settings. In order to address those challenges, we propose an end-to-end fake news detection framework named MetaFEND, which is able to learn quickly to detect fake news on emergent events with a few verified posts. Specifically, the proposed model integrates meta-learning and neural process methods together to enjoy the benefits of these approaches. In particular, a label embedding module and a hard attention mechanism are proposed to enhance the effectiveness by handling categorical information and trimming irrelevant posts. Extensive experiments are conducted on multimedia datasets collected from Twitter and Weibo. The experimental results show our proposed MetaFEND model can detect fake news on never-seen events effectively and outperform the state-of-the-art methods.
93 - Yi Han , Amila Silva , Ling Luo 2021
Recent years have witnessed the significant damage caused by various types of fake news. Although considerable effort has been applied to address this issue and much progress has been made on detecting fake news, most existing approaches mainly rely on the textual content and/or social context, while knowledge-level information---entities extracted from the news content and the relations between them---is much less explored. Within the limited work on knowledge-based fake news detection, an external knowledge graph is often required, which may introduce additional problems: it is quite common for entities and relations, especially with respect to new concepts, to be missing in existing knowledge graphs, and both entity prediction and link prediction are open research questions themselves. Therefore, in this work, we investigate textbf{knowledge-based fake news detection that does not require any external knowledge graph.} Specifically, our contributions include: (1) transforming the problem of detecting fake news into a subgraph classification task---entities and relations are extracted from each news item to form a single knowledge graph, where a news item is represented by a subgraph. Then a graph neural network (GNN) model is trained to classify each subgraph/news item. (2) Further improving the performance of this model through a simple but effective multi-modal technique that combines extracted knowledge, textual content and social context. Experiments on multiple datasets with thousands of labelled news items demonstrate that our knowledge-based algorithm outperforms existing counterpart methods, and its performance can be further boosted by the multi-modal approach.
Effective detection of fake news has recently attracted significant attention. Current studies have made significant contributions to predicting fake news with less focus on exploiting the relationship (similarity) between the textual and visual information in news articles. Attaching importance to such similarity helps identify fake news stories that, for example, attempt to use irrelevant images to attract readers attention. In this work, we propose a $mathsf{S}$imilarity-$mathsf{A}$ware $mathsf{F}$ak$mathsf{E}$ news detection method ($mathsf{SAFE}$) which investigates multi-modal (textual and visual) information of news articles. First, neural networks are adopted to separately extract textual and visual features for news representation. We further investigate the relationship between the extracted features across modalities. Such representations of news textual and visual information along with their relationship are jointly learned and used to predict fake news. The proposed method facilitates recognizing the falsity of news articles based on their text, images, or their mismatches. We conduct extensive experiments on large-scale real-world data, which demonstrate the effectiveness of the proposed method.
As computer-generated content and deepfakes make steady improvements, semantic approaches to multimedia forensics will become more important. In this paper, we introduce a novel classification architecture for identifying semantic inconsistencies between video appearance and text caption in social media news posts. We develop a multi-modal fusion framework to identify mismatches between videos and captions in social media posts by leveraging an ensemble method based on textual analysis of the caption, automatic audio transcription, semantic video analysis, object detection, named entity consistency, and facial verification. To train and test our approach, we curate a new video-based dataset of 4,000 real-world Facebook news posts for analysis. Our multi-modal approach achieves 60.5% classification accuracy on random mismatches between caption and appearance, compared to accuracy below 50% for uni-modal models. Further ablation studies confirm the necessity of fusion across modalities for correctly identifying semantic inconsistencies.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا