Do you want to publish a course? Click here

Transition from no-ELM response to pellet ELM triggering during pedestal build-up -- insights from extended MHD simulations

232   0   0.0 ( 0 )
 Added by Shimpei Futatani
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Pellet ELM triggering is a well established scheme for decreasing the time between two successive ELM crashes below its natural value. Reliable ELM pacing has been demonstrated experimentally in several devices increasing the ELM frequency considerably. However, it was also shown that the frequency cannot be increased arbitrarily due to a so-called lag-time. During this time after a preceding natural or triggered ELM crash, neither a natural ELM crash occurs nor the triggering of an ELM crash by pellet injection is possible. For this article, pellet ELM triggering simulations are advanced beyond previous studies in two ways. Firstly, realistic ExB and diamagnetic background flows are included. And secondly, the pellet is injected at different stages of the pedestal build-up. This allows to recover the lag-time for the first time in simulations and investigate it in detail. A series of non-linear extended MHD simulations is performed to investigate the plasma dynamics resulting from an injection at different time points during the pedestal build-up. The experimentally observed lag-time is qualitatively reproduced well. In particular, a sharp transition is observed between the regime where no ELMs can be triggered and the regime where pellet injection causes an ELM crash. Via variations of pellet parameters and injection time, the two regimes are studied and compared in detail revealing pronounced differences in the non-linear dynamics. The toroidal mode spectrum is significantly broader when an ELM crash is triggered enhancing the stochasticity and therefore also the losses of thermal energy along magnetic field lines. In the heat fluxes to the divertor targets, pronounced toroidal asymmetries are observed. In case of high injection velocities leading to deep penetration, also the excitation of core modes like the $2/1$ neoclassical tearing mode is observed.



rate research

Read More

A global signature of the build-up to an intrinsic ELM is found in the phase of signals measured in full flux azimuthal loops in the divertor region of JET. Full flux loop signals provide a global measurement proportional to the voltage induced by changes in poloidal magnetic flux; they are electromagnetically induced by the dynamics of spatially integrated current density. We perform direct time-domain analysis of the high time-resolution full flux loop signals VLD2 and VLD3. We analyze plasmas where a steady H-mode is sustained over several seconds, during which all the observed ELMs are intrinsic; there is no deliberate intent to pace the ELMing process by external means. ELM occurrence times are determined from the Be II emission at the divertor. We previously found that the occurrence times of intrinsic ELMs correlate with specific phases of the VLD2 and VLD3 signals. Here, we investigate how the VLD2 and VLD3 phases vary with time in advance of the ELM occurrence time. We identify a build-up to the ELM in which the VLD2 and VLD3 signals progressively align to the phase at which ELMs preferentially occur, on a ~ 2 -5ms timescale. At the same time, the VLD2 and VLD3 signals become phase synchronized with each other, consistent with the emergence of coherent global dynamics in the integrated current density. In a plasma that remains close to a global magnetic equilibrium, this can reflect bulk displacement or motion of the plasma. This build-up signature to an intrinsic ELM can be extracted from a time interval of data that does not extend beyond the ELM occurrence time, so that these full flux loop signals could assist in ELM prediction or mitigation.
Recent advances in the integrated modeling of ELMy H-mode plasmas are presented. A model for the H-mode pedestal and for the triggering of ELMs predicts the height, width, and shape of the H-mode pedestal and the frequency and width of ELMs. Formation of the pedestal and the L-H transition is the direct result of ExB flow shear suppression of anomalous transport. The periodic ELM crashes are triggered by either the ballooning or peeling MHD instabilities. The BALOO, DCON, and ELITE ideal MHD stability codes are used to derive a new parametric expression for the peeling-ballooning threshold. The new dependence for the peeling-ballooning threshold is implemented in the ASTRA transport code. Results of integrated modeling of DIII-D like discharges are presented and compared with experimental observations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD.
Injecting frozen deuterium pellets into an ELMy H-mode plasma is a well established scheme for triggering edge localized modes (ELMs) before they naturally occur. Based on an ASDEX Upgrade H-mode plasma, this article presents a comparison of extended MHD simulations of spontaneous type-I ELMs and pellet-triggered ELMs allowing to study their non-linear dynamics in detail. In particular, pellet-triggered ELMs are simulated by injecting deuterium pellets into different time points during the pedestal build-up described in [A. Cathey et al. Nuclear Fusion 60, 124007 (2020)]. Realistic ExB and diamagnetic background plasma flows as well as the time dependent bootstrap current evolution are included during the build-up to capture the balance between stabilising and destabilising terms for the edge instabilities accurately. Dependencies on the pellet size and injection times are studied. The spatio-temporal structures of the modes and the resulting divertor heat fluxes are compared in detail between spontaneous and triggered ELMs. We observe that the premature excitation of ELMs by means of pellet injection is caused by a helical perturbation described by a toroidal mode number of n = 1. In accordance with experimental observations, the pellet-triggered ELMs show reduced thermal energy losses and narrower divertor wetted area with respect to spontaneous ELMs. The peak divertor energy fluency is seen to decrease when ELMs are triggered by pellets injected earlier during the pedestal build-up.
The interaction between Edge Localized Modes (ELMs) and Resonant Magnetic Perturbations (RMPs) is modeled with the magnetohydrodynamic code JOREK using experimental parameters from ASDEX Upgrade discharges. The ELM mitigation or suppression is optimal when the amplification of both tearing and peeling-kink responses result in a better RMP penetration. The ELM mitigation or suppression is not only due to the reduction of the pressure gradient, but predominantly arises from the toroidal coupling between the ELMs and the RMP-induced mode at the plasma edge, forcing the edge modes to saturate at a low level. The bifurcation from ELM mitigation to ELM suppression is observed when the RMP amplitude is increased. ELM mitigation is characterized by rotating modes at the edge, while the mode locking to RMPs is induced by the resonant braking of the electron perpendicular flow in the ELM suppression regime.
Sustained ELM mitigation has been achieved using RMPs with a toroidal mode number of n=4 and n=6 in lower single null and with n=3 in connected double null plasmas on MAST. The ELM frequency increases by up to a factor of eight with a similar reduction in ELM energy loss. A threshold current for ELM mitigation is observed above which the ELM frequency increases approximately linearly with current in the coils. A comparison of the filament structures observed during the ELMs in the natural and mitigated stages shows that the mitigated ELMs have the characteristics of type I ELMs even though their frequency is higher, their energy loss is reduced and the pedestal pressure gradient is decreased. During the ELM mitigated stage clear lobe structures are observed in visible-light imaging of the X-point region. The size of these lobes is correlated with the increase in ELM frequency observed. The RMPs produce a clear 3D distortion to the plasma and it is likely that these distortions explain why ELMs are destabilised and hence why ELM mitigation occurs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا