Do you want to publish a course? Click here

The light MSSM Higgs boson mass for large $tanbeta$ and complex input parameters

73   0   0.0 ( 0 )
 Added by Henning Bahl
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We discuss various improvements of the prediction for the light MSSM Higgs boson mass in the hybrid framework of the public code FeynHiggs, which combines fixed-order and effective field theory results. First, we discuss the resummation of logarithmic contributions proportional to the bottom-Yukawa coupling including two-loop $Delta_b$ resummation. For large $tanbeta$, these improvements can lead to large upward shifts of the Higgs mass compared to the existing fixed-order calculations. Second, we improve the implemented EFT calculation by fully taking into account the effect of $mathcal{CP}$-violating phases. As a third improvement, we discuss the inclusion of partial N$^3$LL resummation. The presented improvements will be implemented into FeynHiggs.



rate research

Read More

269 - K.E. Williams , G. Weiglein 2008
The analysis of the Higgs search results at LEP showed that a part of the MSSM parameter space with non-zero complex phases could not be excluded, where the lightest neutral Higgs boson, h_1, has a mass of only about 45 GeV and the second lightest neutral Higgs boson, h_2, has a sizable branching fraction into a pair of h_1 states. Full one-loop results for the Higgs cascade decay h_2 --> h_1 h_1 are presented and combined with two-loop Higgs propagator corrections taken from the program FeynHiggs. Using the improved theoretical prediction to analyse the limits on topological cross sections obtained at LEP, the existence of an unexcluded region at low Higgs mass is confirmed. The effect of the genuine vertex corrections on the size and shape of this region is discussed.
For the interpretation of the signal discovered in the Higgs searches at the LHC it will be crucial in particular to discriminate between the minimal Higgs sector realised in the Standard Model (SM) and its most commonly studied extension, the Minimal Supersymmetric SM (MSSM). The measured mass value, having already reached the level of a precision observable with an experimental accuracy of about 500 MeV, plays an important role in this context. In the MSSM the mass of the light CP-even Higgs boson, M_h, can directly be predicted from the other parameters of the model. The accuracy of this prediction should at least match the one of the experimental result. The relatively high mass value of about 126 GeV has led to many investigations where the scalar top quarks are in the multi-TeV range. We improve the prediction for M_h in the MSSM by combining the existing fixed-order result, comprising the full one-loop and leading and subleading two-loop corrections, with a resummation of the leading and subleading logarithmic contributions from the scalar top sector to all orders. In this way for the first time a high-precision prediction for the mass of the light CP-even Higgs boson in the MSSM is possible all the way up to the multi-TeV region of the relevant supersymmetric particles. The results are included in the code FeynHiggs.
The remaining theoretical uncertainties from unknown higher-order corrections in the prediction for the light Higgs-boson mass of the MSSM are estimated. The uncertainties associated with three different approaches that are implemented in the publicly available code FeynHiggs are compared: the fixed-order diagrammatic approach, suitable for low SUSY scales, the effective field theory (EFT) approach, suitable for high SUSY scales, and the hybrid approach which combines the fixed-order and the EFT approaches. It is demonstrated for a simple single-scale scenario that the result based on the hybrid approach yields a precise prediction for low, intermediate and high SUSY scales with a theoretical uncertainty of up to $sim 1.5$ GeV for large stop mixing and $sim 0.5$ GeV for small stop mixing. The uncertainty estimate of the hybrid calculation approaches the uncertainty estimate of the fixed-order result for low SUSY scales and the uncertainty estimate of the EFT approach for high SUSY scales, while for intermediate scales it is reduced compared to both of the individual results. The estimate of the theoretical uncertainty is also investigated in scenarios with more than one mass scale. A significantly enhanced uncertainty is found in scenarios where the gluino is substantially heavier than the scalar top quarks. The uncertainty estimate presented in this paper will be part of the public code FeynHiggs.
State-of-the-art predictions for the mass of the lightest MSSM Higgs boson usually involve the resummation of higher-order logarithmic contributions obtained within an effective-field-theory (EFT) approach, often combined with a fixed-order calculation into a hybrid result. For the phenomenologically interesting case of a significant hierarchy between the gluino mass and the masses of the scalar top quarks the predictions suffer from large theoretical uncertainties related to non-decoupling power-enhanced gluino contributions in the EFT results employing the $overline{text{DR}}$ renormalisation scheme. We demonstrate that the theoretical predictions in the heavy gluino region are vastly improved by the introduction of a suitable renormalisation scheme for the EFT calculation. It is shown that within this scheme a recently proposed resummation of large gluino contributions is absorbed into the model parameters, resulting in reliable and numerically stable predictions in the heavy-gluino gluino region. We also discuss the integration of the results into the public code FeynHiggs.
The signal discovered in the Higgs searches at the LHC can be interpreted as the Higgs boson of the Standard Model as well as the light CP-even Higgs boson of the Minimal Supersymmetric Standard Model (MSSM). In this context the measured mass value, having already reached the level of a precision observable with an experimental accuracy of about 500 MeV, plays an important role. This precision can be improved substantially below the level of about 50 MeV at the future International Linear Collider (ILC). Within the MSSM the mass of the light CP-even Higgs boson, M_h, can directly be predicted from the other parameters of the model. The accuracy of this prediction should match the one of the experimental measurements. The relatively high experimentally observed value of the mass of about 125.6 GeV has led to many investigations where the supersymmetric (SUSY) partners of the top quark have masses in the multi-TeV range. We review the recent improvements for the prediction for M_h in the MSSM for large scalar top masses. They were obtained by combining the existing fixed-order result, comprising the full one-loop and leading and subleading two-loop corrections, with a resummation of the leading and subleading logarithmic contributions from the scalar top sector to all orders. In this way for the first time a high-precision prediction for the mass of the light CP-even Higgs boson in the MSSM is possible all the way up to the multi-TeV region of the relevant supersymmetric particles. However, substantial further improvements will be needed to reach the ILC precision. The newly obtained corrections to M_h are included into the code FeynHiggs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا