Do you want to publish a course? Click here

PySchedCL: Leveraging Concurrency in Heterogeneous Data-Parallel Systems

85   0   0.0 ( 0 )
 Added by Anirban Ghose
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In the past decade, high performance compute capabilities exhibited by heterogeneous GPGPU platforms have led to the popularity of data parallel programming languages such as CUDA and OpenCL. Such languages, however, involve a steep learning curve as well as developing an extensive understanding of the underlying architecture of the compute devices in heterogeneous platforms. This has led to the emergence of several High Performance Computing frameworks which provide high-level abstractions for easing the development of data-parallel applications on heterogeneous platforms. However, the scheduling decisions undertaken by such frameworks only exploit coarse-grained concurrency in data parallel applications. In this paper, we propose PySchedCL, a framework which explores fine-grained concurrency aware scheduling decisions that harness the power of heterogeneous CPU/GPU architectures efficiently. %, a feature which is not provided by existing HPC frameworks. We showcase the efficacy of such scheduling mechanisms over existing coarse-grained dynamic scheduling schemes by conducting extensive experimental evaluations for a Machine Learning based inferencing application.



rate research

Read More

Performance and energy are the two most important objectives for optimisation on modern parallel platforms. Latest research demonstrated the importance of workload distribution as a decision variable in the bi-objective optimisation for performance and energy on homogeneous multicore clusters. We show in this work that bi-objective optimisation for performance and energy on heterogeneous processors results in a large number of Pareto-optimal optimal solutions (workload distributions) even in the simple case of linear performance and energy profiles. We then study performance and energy profiles of real-life data-parallel applications and find that their shapes are non-linear, complex and non-smooth. We, therefore, propose an efficient and exact global optimisation algorithm, which takes as an input most general discrete performance and dynamic energy profiles of the heterogeneous processors and solves the bi-objective optimisation problem. The algorithm is also used as a building block to solve the bi-objective optimisation problem for performance and total energy. We also propose a novel methodology to build discrete dynamic energy profiles of individual computing devices, which are input to the algorithm. The methodology is based purely on system-level measurements and addresses the fundamental challenge of accurate component-level energy modelling of a hybrid data-parallel application running on a heterogeneous platform integrating CPUs and accelerators. We experimentally validate the proposed method using two data-parallel applications, matrix multiplication and 2D fast Fourier transform (2D-FFT).
Heterogeneous systems are becoming more common on High Performance Computing (HPC) systems. Even using tools like CUDA and OpenCL it is a non-trivial task to obtain optimal performance on the GPU. Approaches to simplifying this task include Merge (a library based framework for heterogeneous multi-core systems), Zippy (a framework for parallel execution of codes on multiple GPUs), BSGP (a new programming language for general purpose computation on the GPU) and CUDA-lite (an enhancement to CUDA that transforms code based on annotations). In addition, efforts are underway to improve compiler tools for automatic parallelization and optimization of affine loop nests for GPUs and for automatic translation of OpenMP parallelized codes to CUDA. In this paper we present an alternative approach: a new computational framework for the development of massively data parallel scientific codes applications suitable for use on such petascale/exascale hybrid systems built upon the highly scalable Cactus framework. As the first non-trivial demonstration of its usefulness, we successfully developed a new 3D CFD code that achieves improved performance.
Data-intensive applications are becoming commonplace in all science disciplines. They are comprised of a rich set of sub-domains such as data engineering, deep learning, and machine learning. These applications are built around efficient data abstractions and operators that suit the applications of different domains. Often lack of a clear definition of data structures and operators in the field has led to other implementations that do not work well together. The HPTMT architecture that we proposed recently, identifies a set of data structures, operators, and an execution model for creating rich data applications that links all aspects of data engineering and data science together efficiently. This paper elaborates and illustrates this architecture using an end-to-end application with deep learning and data engineering parts working together.
Mobile edge computing (MEC) is a promising technique for providing low-latency access to services at the network edge. The services are hosted at various types of edge nodes with both computation and communication capabilities. Due to the heterogeneity of edge node characteristics and user locations, the performance of MEC varies depending on where the service is hosted. In this paper, we consider such a heterogeneous MEC system, and focus on the problem of placing multiple services in the system to maximize the total reward. We show that the problem is NP-hard via reduction from the set cover problem, and propose a deterministic approximation algorithm to solve the problem, which has an approximation ratio that is not worse than $left(1-e^{-1}right)/4$. The proposed algorithm is based on two sub-routines that are suitable for small and arbitrarily sized services, respectively. The algorithm is designed using a novel way of partitioning each edge node into multiple slots, where each slot contains one service. The approximation guarantee is obtained via a specialization of the method of conditional expectations, which uses a randomized procedure as an intermediate step. In addition to theoretical guarantees, simulation results also show that the proposed algorithm outperforms other state-of-the-art approaches.
67 - Nikos Vasilakis 2020
This paper presents {scshape PaSh}, a system for parallelizing POSIX shell scripts. Given a script, {scshape PaSh} converts it to a dataflow graph, performs a series of semantics-preserving program transformations that expose parallelism, and then converts the dataflow graph back into a script -- one that adds POSIX constructs to explicitly guide parallelism coupled with {scshape PaSh}-provided {scshape Unix}-aware runtime primitives for addressing performance- and correctness-related issues. A lightweight annotation language allows command developers to express key parallelizability properties about their commands. An accompanying parallelizability study of POSIX and GNU commands -- two large and commonly used groups -- guides the annotation language and optimized aggregator library that {scshape PaSh} uses. Finally, {scshape PaSh}s {scshape PaSh}s extensive evaluation over 44 unmodified {scshape Unix} scripts shows significant speedups ($0.89$--$61.1times$, avg: $6.7times$) stemming from the combination of its program transformations and runtime primitives.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا