Hermitian K-theory for stable $infty$-categories II: Cobordism categories and additivity


Abstract in English

We define Grothendieck-Witt spectra in the setting of Poincare $infty$-categories and show that they fit into an extension with a L- and an L-theoretic part. As consequences we deduce localisation sequences for Verdier quotients, and generalisations of Karoubis fundamental and periodicity theorems for rings in which 2 need not be invertible. Our set-up allows for the uniform treatment of such algebraic examples alongside homotopy-theoretic generalisations: For example, the periodicity theorem holds for complex oriented $mathrm{E}_1$-rings, and we show that the Grothendieck-Witt theory of parametrised spectra recovers Weiss and Williams LA-theory. Our Grothendieck-Witt spectra are defined via a version of the hermitian Q-construction, and a novel feature of our approach is to interpret the latter as a cobordism category. This perspective also allows us to give a hermitian version -- along with a concise proof -- of the theorem of Blumberg, Gepner and Tabuada, and provides a cobordism theoretic description of the aforementioned LA-spectra.

Download