Do you want to publish a course? Click here

An explicit and practically invariants-preserving method for conservative systems

84   0   0.0 ( 0 )
 Added by Wenjun Cai
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

An explicit numerical strategy that practically preserves invariants is derived for conservative systems by combining an explicit high-order Runge-Kutta (RK) scheme with a simple modification of the standard projection approach, which is named the explicit invariants-preserving (EIP) method. The proposed approach is shown to have the same order as the underlying RK method, while the error of invariants is analyzed in the order of $mathcal{O}left(h^{2(p+1)}right),$ where $h$ is the time step and $p$ represents the order of the method. When $p$ is appropriately large, the EIP method is practically invariants-conserving because the error of invariants can reach the machine accuracy. The method is illustrated for the cases of single and multiple invariants, with regard to both ODEs and high-dimensional PDEs. Extensive numerical experiments are presented to verify our theoretical results and demonstrate the superior behaviors of the proposed method in a long time numerical simulation. Numerical results suggest that the fourth-order EIP method preserves much better the qualitative properties of the flow than the standard fourth-order RK method and it is more efficient in practice than the fully implicit integrators.



rate research

Read More

In this paper, we consider an online enrichment procedure using the Generalized Multiscale Finite Element Method (GMsFEM) in the context of a two-phase flow model in heterogeneous porous media. The coefficient of the elliptic equation is referred to as the permeability and is the main source of heterogeneity within the model. The elliptic pressure equation is solved using online GMsFEM, and is coupled with a hyperbolic transport equation where local conservation of mass is necessary. To satisfy the conservation property, we aim at constructing conservative fluxes within the space of multiscale basis functions through the use of a postprocessing technique. In order to improve the accuracy of the pressure and velocity solutions in the online GMsFEM we apply a systematic online enrichment procedure. The increase in pressure accuracy due to the online construction is inherited by the conservative flux fields and the desired saturation solutions from the coupled transport equation. Despite the fact that the coefficient of the pressure equation is dependent on the saturation which may vary in time, we may construct an approximation space using the initial coefficient where no further basis updates follow. Numerical results corresponding to four different types of heterogeneous permeability coefficients are exhibited to test the proposed methodology.
Error estimates are rigorously derived for a semi-discrete version of a conservative spectral method for approximating the space-homogeneous Fokker-Planck-Landau (FPL) equation associated to hard potentials. The analysis included shows that the semi-discrete problem has a unique solution with bounded moments. In addition, the derivatives of such a solution up to any order also remain bounded in $L^2$ spaces globally time, under certain conditions. These estimates, combined with control of the spectral projection, are enough to obtain error estimates to the analytical solution and convergence to equilibrium states. It should be noted that this is the first time that an error estimate has been produced for any numerical method which approximates FPL equations associated to any range of potentials.
We introduce conservative integrators for long term integration of piecewise smooth systems with transversal dynamics and piecewise smooth conserved quantities. In essence, for a piecewise dynamical system with piecewise defined conserved quantities such that its trajectories cross transversally to its interface, we combine Mannshardts transition scheme and the Discrete Multiplier Method to obtain conservative integrators capable of preserving conserved quantities up to machine precision and accuracy order. We prove that the order of accuracy of the integrators is preserved after crossing the discontinuity in the case of codimension one number of conserved quantities. Numerical examples illustrate the preservation of accuracy order.
We consider general systems of ordinary differential equations with monotonic Gibbs entropy, and introduce an entropic scheme that simply imposes an entropy fix after every time step of any existing time integrator. It is proved that in the general case, our entropy fix has only infinitesimal influence on the numerical order of the original scheme, and in many circumstances, it can be shown that the scheme does not affect the numerical order. Numerical experiments on the linear Fokker-Planck equation and nonlinear Boltzmann equation are carried out to support our numerical analysis.
In this paper, we develop a new free-stream preserving (FP) method for high-order upwind conservative finite-difference (FD) schemes on the curvilinear grids. This FP method is constrcuted by subtracting a reference cell-face flow state from each cell-center value in the local stencil of the original upwind conservative FD schemes, which effectively leads to a reformulated dissipation. It is convenient to implement this method, as it does not require to modify the original forms of the upwind schemes. In addition, the proposed method removes the constraint in the traditional FP conservative FD schemes that require a consistent discretization of the mesh metrics and the fluxes. With this, the proposed method is more flexible in simulating the engineering problems which usually require a low-order scheme for their low-quality mesh, while the high-order schemes can be applied to approximate the flow states to improve the resolution. After demonstrating the strict FP property and the order of accuracy by two simple test cases, we consider various validation cases, including the supersonic flow around the cylinder, the subsonic flow past the three-element airfoil, and the transonic flow around the ONERA M6 wing, etc., to show that the method is suitable for a wide range of fluid dynamic problems containing complex geometries. Moreover, these test cases also indicate that the discretization order of the metrics have no significant influences on the numerical results if the mesh resolution is not sufficiently large.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا