Stability of Fractional Nonlinear Systems with Mittag-Leffler Kernel and Design of State Observers


Abstract in English

Atangana and Baleanu proposed a new fractional derivative with non-local and no-singular Mittag-Leffler kernel to solve some problems proposed by researchers in the field of fractional calculus. This new derivative is better to describe essential aspects of non-local dynamical systems. We present some results regarding Lyapunov stability theory, particularly the Lyapunov Direct Method for fractional-order systems modeled with Atangana-Baleanu derivatives and some significant inequalities that help to develop the theoretical analysis. As applications in control theory, some algorithms of state estimation are proposed for linear and nonlinear fractional-order systems.

Download