Do you want to publish a course? Click here

A class of super Heisenberg-Virasoro algebras

177   0   0.0 ( 0 )
 Added by Haibo Chen
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, a class of super Heisenberg-Virasoro algebras is introduced on the base of conformal modules of Lie conformal superalgebras. Then we construct a class of simple super Heisenberg-Virasoro modules, which is induced from simple modules of the finite-dimensional solvable Lie superalgebras. These modules are isomorphic to simple restricted super Heisenberg-Virasoro modules, and include the highest weight modules, Whittaker modules and high order Whittaker modules.



rate research

Read More

125 - Chengkang Xu 2021
Let $mathfrak g(G,lambda)$ denote the deformed generalized Heisenberg-Virasoro algebra related to a complex parameter $lambda eq-1$ and an additive subgroup $G$ of $mathbb C$. For a total order on $G$ that is compatible with addition, a Verma module over $mathfrak g(G,lambda)$ is defined. In this paper, we completely determine the irreducibility of these Verma modules.
165 - Haibo Chen , Yucai Su 2019
In this paper, we realize polynomial $H$-modules $Omega(lambda,alpha,beta)$ from irreducible twisted Heisenberg-Virasoro modules $A_{alpha,beta}$. It follows from $H$-modules $Omega(lambda,alpha,beta)$ and $mathrm{Ind}(M)$ that we obtain a class of natural non-weight tensor product modules $big(bigotimes_{i=1}^mOmega(lambda_i,alpha_i,beta_i)big)otimes mathrm{Ind}(M)$. Then we give the necessary and sufficient conditions under which these modules are irreducible and isomorphic, and also give that the irreducible modules in this class are new.
239 - Dong Liu , Cuipo Jiang 2008
In this paper, we classify all indecomposable Harish-Chandra modules of the intermediate series over the twisted Heisenberg-Virasoro algebra. Meanwhile, some bosonic modules are also studied.
A double extension ($mathscr{D}$ extension) of a Lie (super)algebra $mathfrak a$ with a non-degenerate invariant symmetric bilinear form $mathscr{B}$, briefly: a NIS-(super)algebra, is an enlargement of $mathfrak a$ by means of a central extension and a derivation; the affine Kac-Moody algebras are the best known examples of double extensions of loops algebras. Let $mathfrak a$ be a restricted Lie (super)algebra with a NIS $mathscr{B}$. Suppose $mathfrak a$ has a restricted derivation $mathscr{D}$ such that $mathscr{B}$ is $mathscr{D}$-invariant. We show that the double extension of $mathfrak a$ constructed by means of $mathscr{B}$ and $mathscr{D}$ is restricted. We show that, the other way round, any restricted NIS-(super)algebra with non-trivial center can be obtained as a $mathscr{D}$-extension of another restricted NIS-(super)algebra subject to an extra condition on the central element. We give new examples of $mathscr{D}$-extensions of restricted Lie (super)algebras, and pre-Lie superalgebras indigenous to characteristic 3.
179 - Xiaoli Kong , Chengming Bai 2008
In this paper, we classify the compatible left-symmetric superalgebra structures on the super-Virasoro algebras satisfying certain natural conditions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا