With many variables to adjust, conventional manual forward planning for Gamma Knife (GK) radiosurgery is very complicated and cumbersome. The resulting plan quality heavily depends on planners skills, experiences and devoted efforts, and varies significantly among cases, planners, and institutions. Quality control for GK planning is desired to consistently provide high-quality plan to each patient. In this study, we proposed a quality control method for GK planning by building a database of high-quality GK plans. Patient anatomy was described by target volume, target shape complexity, and spatial relationship between target and nearby organs, which determine GK planning difficulty level. Plan quality was evaluated using target coverage, selectivity, intermediate dose spillage, maximum dose to 0.1 cc of brainstem, mean dose of ipsilateral cochlea, and beam-on time. When a new plan is created, a high-quality plan that has the most similar target volume size and shape complexity will be identified from the database. A model has also been built to predict the dose to brainstem and cochlea based on their overlap volume histograms. The identified reference plan and the predicted organ dose will help planners to make quality control decisions accordingly. To validate this method, we have built a database for vestibular schwannoma, which are considered to be challenging for GK planning due to the irregularly-shaped target and its proximity to brainstem and cochlea. Five cases were tested, among which one case was considered to be of high quality and four cases had a lower plan quality than prediction. These four cases were replanned and got substantially improved. Our results have demonstrated the efficacy of our proposed quality control method. This method may also be used as a plan quality prediction method to facilitate the development of automatic treatment planning for GK radiosurgery.